
RL-TR-- AD-A253 891
Fl Tdt l Report lllil1111 ll 11111 11111 ll 11111I

SOFTWARE QUALITY
METHODOLOGY INTEGRATION
STUDY RESULTS

RohstrIsttt of TechnologyWD I
Jfeffy A.Laicy. Mictasi J. Lutz ___

92-22314192 8 0 o 6lllllllllllldl ''' Illl

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be eleasable to the general public, including foreign nations.

RL-TR-92-79 has been reviewed and is approved for publication.

-y ,' h
APPROVED:

V

ROGER J. DZIEGIEL, JR.
Project Engineer

FOR THE COMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laborator.
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(C3C4 Griffiss AFB, NY 13441-3700. This will assist us in maintaining .1
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE 0MB 188

~m~frin~ r~I~um atb bat m~ai*t Hm " u* swb0wg1 tWanmp-d "UR g, i215jdfwwi

Dmbo O*MIUi AdnaWVA4 W a '. olW M.~woon wi~Q PpmwkigA~kPg pJOWa u. Wedm -0 Cm

1. AGENCY USE ONLY Owame uI 2. REPORT D PREPORT E AND DATES COVERED

May 1992 Final Sep 87 - Jul 90

4. TI.E AND SUBTITLE . FUDING NUMBERS

SOFTWARE QUALITY METHODOLOGY INTEGRATION STUDY RESULTS C - F30602-88-D-0026,
Task B-9-3333

A..... PE - 62702F
PR - 5581

Jeffrey A. Lasky, Michael J. Lutz TA - 20
WU - P9

7. PERFORMNG ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
Rochester Institute of Technology REPORT NUMBER
1 Lomb Drive
Rochester NY 14613-5700 N/A

. SPONSR.MA.NI ORIG AGENCY NAME(S) AND AD0RES$(ES) 1. SQK S uF.. >1TORING

Rome Laboratory (C3CB) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RL-TR-92-79

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Roger J. Dziegiel, Jr./C3CB/(315) 330-2054

12a. DISTRIBUTIONAVAILABTLIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13thVh 5 1 rus ot rs efort was to examine the software quality methodology and

determine what improvements were necessary to improve utility of this technology.

Rome Laboratory has been working in the area of software quality since the earlier

70's. The goal of the framework was to provide program managers a quantitative

method for gaining insight into the quality of their software products (i.e. software

requirements specification, preliminary design, detailed design, coding). This effort

identified short falls in the methodology due to technology advances and the need to

make enhancements.

Safety is one area the software quality framework does not support or address. This

effort identified new quality factors that would be needed to address safety and

software quality issues. Factors, criteria definitions, and metric element questions

from the software quality model were reviewed within the context of defining safety.

Object oriented technology (OOT) was also examined to determine what should be added

to the framework. New software developments are using object oriented design and to

take advantage of this technology the framework needs to be updated. Seven software

quality factors and ten software criteria were identified as being impacted by the

use of object oriented technology.

14 SUBECT TERMS is U ?,TGs
Software Quality, Software Safety, Metrics, Object Oriented

Technology ta POKE CO0E

17. SECU SYCT A TON I & SECURIY CLASSIFICATION h5. SECMIY CLASSIFICATON 20. LIMITATION OF ABSTRACT

UNCLASSIFIED 0 RMSMIED OFtiE IFIED UL
N d 7 -W ,41=W F W n

21&-102

TABLE OF CONTENTS

I. EXECUTIVE SUMMARY
1. INTRODUCTION ... I-I
2. BACKGROUND ... I-1
3. PRESENT STUDY .. I-1
4. OVERVIEW OF CONTRACT RESULTS -2

4.1 Organizaion of the Report ... 1-2
4.2 Software Quality Measurement Methodology ... 1-2
4.3 Safety and Software Quality ... 1-3
4.4 Object-Oriented Technology and Software Safety 1-4

5. SUMMARY ... 1-4
6. REFERENCES ... 1-4

H. SOFTWARE QUALITY MEASUREMENT METHODOLOGY
1. INTRODUCTION ... 11-1

1.1 Specification and Measurement of Software Product Quality 11-1
1.2 Specification and Measurement of Software Process Quality 11-1
1.3 History of RADC Software Quality Research Program 11-2

1.3.1 Guidebook development .. 11-2
1.3.2 Validation studies .. 11-2
1.3.3 Support tool development ... 11-3
1.3.4 Transition into practice .. 11-4
1.3.5 The present study ... 1 -4

2. SOFTWARE QUALITY FRAMEWORK ... 1 -5
2.1 Software Quality Model .. 11-5
2.2 Technical Interrelationships ... 1 -6
2.3 Analysis .. 11-7

2.3.1 T-ace level quality model ... 11-7
2.3.2 SQF definition .. -8
2.3.3 Factor and criteria interrelationships ... 11-8
2.3.4 Metric questions .. 1 -9

3. Software Quality Methodology .. 11- 10
3.1 Determine Quality Goals ... 11-10
3.2 Determine Technical Feasibility ... 11-10
3.3 Measure Achieved Quality ... II- 11
3.4 Analysis .. II-11

3.4.1 Determine quality goals ... 1-11
3.4.2 Determine technical feasibility .. 11-12

4. SUPPORT TOOLS .. 11-14
4.1 Assistant for Specifying the Quality of Software &11-14

4.1.1 Evaluation: core functionality ... 11-15
4.1.2 Evaluation: cum nt implementation .. -16
4.1.3 Evaluation: future implementation ... I-17

4.2 Quality Evaluation System ... 11-18
5. SUMMARY ... 11-19
6. FUTURE RESEARCH ... -20

6.1 Architecture .. 11-20
6.2 Philosophy of Use .. 11-21

7. LIST OF RECOMMENDATIONS ... 11-22
8. REFERENCES ... 11-23

IL SAFETY and SOFTWARE QUALITY
1. INTRODUCTION 1...r-
2. CONCERNS 11-2
3. SOFTWARE SAFETY .. 111-3

3. 1 Definitions .. 111-3
3.2 Hazard Analysis ... 11-4

4. SAFETY-CRITICAL SOFTWARE DEVELOPMENT STANDARDS 111-8
4.2 First Generation ... 111-8
4.2 Second Generation .. 1 -8
4.3 Third Generation ... n-11
4.4 Analyzability .2... -12
4.5 Predictability -13
4.6 Comparison .. I11-14

5. MIL-STD-882B .. r -14
5.1 Overview ... 1-14
5.2 Series 300 tasks ... M1-15

6. MoD 00-55 .. M-17
6.1 Overview .. I-17
6.2 Software Development I-18

7. ISOLATION OF SAFETY CRICAL SOFTWARE ... 111-23
8. A SAFETY QUALITY FACTOR ... II-24

8.1 Definition ... M-24
8.1.1 Reliability ... r1-24
8.1.2 Survivability .. -25
8.1.3 Usability .. IH-26
8.1.4 Correctness ... H-26
8.1.5 Verifiability .. II-26

8.2 Metric Questions .. II-27
9. REFERENCES ... II-36

IV. OBJECT-ORIENTED TECHNOLOGY and SOFTWARE QUALITY
1. INTRODUCTION ... IV-1
2. KEY CONCEPTS .. IV-2

2.1 Historical Development ... IV-2
2.2 Objects and classes ... IV-3

2.2.1 What is an Object? ... IV-3
2.2.2 What is a Class? .. IV-4

2.3 Inheritance ... IV-5
.2.3.1 Inheritance and Data Typing .. IV-7
2.3.2 Inheritance and Code Reuse .. IV-8
2.3.3 Multiple Inheritance ... IV-8
2.3.4 Clients vs. Heirs ... IV-9

2.4 An Alternative: Prototypes and Delegation ... IV-10
2.5 Other Issues ... IV-10

2.5.1 Polymorphism .. IV-10
2.5.2 Dynamic Binding I..................................... 1
2.5.3 Object-Oriented vs. Object-Based Languages IV-il

3. OBJECT-ORIENTED DESIGN .. IV-12
3. 1 Issues ... IV-12

3.1.1 Formal and Rigorous Development .. IV-12

ii

3.1.2 Encapsulation and Information Hiding .. IV-13
3.1.3 Class Organization .. IV-13
3.1.4 Abstraction and Reusable Classes ... IV-14

3.2 Design Approaches IV-15
3.2.1 Software Construction as Contracting ... IV-15
3.2.2 Design Methods .. IV-15
3.2.3 Reusable Frameworks ... IV-16

4. QUALITY METRICS for OBJECr-ORIENITED DEVELOPMENT IV-17
4.1 Software Quality Framework IV- 17
4.2 Software Quality Factors IV-18

4.2.1 Usability .. IV -18
4.2.2. Correctness IV-18
4.2.3 Maintainability IV-19
4.2.4 Expandability ... IV-19
4.2.5 Flexibility ... IV-19
4.2.6 Interoperability IV-19
4.2.7 Reusability .. IV-19

4.3 Software Quality Criteria ... IV-20
4.3.1 Application Independence ... IV-20
4.3.2 Augmentability IV-20
4.3.3 Completeness ... IV-20
4.3.4 Consistency ... IV-20
4.3.5 Functional Scope ... IV-21
4.3.6 Generality .. IV-21
4.3.7 M odularity .. IV-21
4.3.8 Operability .. V-21
4.3.9 Simplicity ... IV-21
4.3.10 System Clarity V...................................... -22

4.4 Metric Enhancement for Object-Oriented Development IV-22
5. REFERENCES ... IV-35

DTIC QUALITY msPEcbf_ 5

£@,esg to IFor
ITIS GRA&Z
DTIC TAB

Unannoanc ed

b latributloa

AvalleblaltCr 0

iii

SECTION I

EXECUTIVE SUMMARY

1. INTRODUCTION

This technical report presents the results of the Software Quality Methodology
Integration Study. This work was performed for Rome Laboratory (RL) by Rochester
Institute of Technology (RIT) under contract no. F30602-88-D-0026.

2. BACKGROUND

This effort continues work on the Software Quality Measurement methodology was
has been under development by Rome Laboratory (formerly Rome Air Development
Center) since 1976. Past RL sponsored work has been aimed at reviewing the
Methodology as set forth in a three volume set of guidebooks developed by Boeing
Aerospace Company and published in early 1985 [1]. A series of three guidebook
validation studies were undertaken in the 1985-1987 time period. The purpose of these
projects was to assess the feasibility and utility of transitioning the software quality
measurement methodology to the software acquisition environment [2,3,4]. Each of these
validation projects generated numerous recommendations for modifications to the
methodology and to the guidebooks. In addition, a Software Quality Methodology
Working Group was established, with representatives from contractor's who had ongoing
efforts in the software quality measurement program. The working group met throughout
1988 and a compilation of the group's deliberations is found in [5].

More recent Rome Laboratory sponsored software quality efforts have focused on
extensions and enhancements to the Methodology and on preparing the Methodology for
transition into acquisition management practice. One of these efforts developed a cross
reference guide between the Methodology's measurement elements and the corresponding
data source location within the DOD-STD-2167A documentation structure [6]. This study
also provided a method to integrate the software quality specification process within the Air
Force's risk management framework [7], and a method to incorporate the Air Force's
Management Indicators into the Methodology. Additional recent work includes completion
of the first versions of the Methodology's two support tools, the Assistant for the
Specification of Software Quality (ASQS) and the Quality Evaluation System (QUES).
ASQS is an expert system designed to make available the Methodology's software quality
specification process to acquisition managers who may not be experts in software quality
technology [8]. QUES is a software quality system designed to support the data and
calculation intensive components of the Methodology [9].

3. PRESENT STUDY

The objective of the present study is to support the continued evolution of the
methodology. One of our study's two principal aims was to sketch out a research
architecture to suggest future research activities for RL's software quality program. In order
to preserve program continuity, we decided to again review the Methodology and the
findings of the prior validation studies. This review was approached from a higher level

I-1

perspective compared to our previous effort (6]. We also examined the Methodology's two
support tools.

Our other principal aim was to support RL's intention to periodically update the
Methodology in order to be consistent with revisions to DOD-STD-2167 and to incorporate
advances in software engineering technology. The methodology was defined at the time
DoD-STD-2167 was in effect. The current standard is DoD-STD-2167A which requires
that a contractor perform a safety analysis if the software component of a system could
contribute to placing the system into a hazardous condition. Thus, our study includes
initial work on the definition of a fourteenth software quality factor SAFETY.

In order to support the objective of having the Methodology reflect current software
engineering practice, we selected object-oriented technology for a second initial
investigation. Interest and use in object-oriented technologies is rapidly accelerating and
many of the claimed advantages of object orientation are directly related to software quality.

4. OVERVIEW OF CONTRACT RESULTS

4.1 Organization of the Report

Due to the wide scope of the investigations conducted under this contract, we decided
to organize this report as a series of three separate studies, each with its own introduction
and set of references. None of the studies makes reference to any of the other studies.
Following are summaries of the contract's results.

4.2 Software Quality Measurement Methodology

The summary of our findings related to the review of the methodology is organized
around three major observations:

1. The Software Quality Methodology suffers from a lack of conceptual integrity.

Virtually every component of the Methodology is open to criticism due to the
presence of arbitrariness or subjectivity. The net effect of this lack of conceptual
integrity is a reduced degree of confidence in the Methodology and an impairment to
acceptance and use.

2. The Software Quality Framework is not evolving at a rate sufficient to adequately
reflect the evolution of software engineering practice and DoD software strategy.

In order to be viewed as useful, the Software Quality Framework must be
continually revised in a timely manner to reflect actual contractor software
development practice. In the contracting community, software development practice
is strongly impacted not only by DoD mandates (e.g., Ada) but also by DoD stated
areas of emphasis and strategy (e.g., reuse). The Framework is lagging in this
respect. Timely attention must be given to expanding the Framework's definition of
the quality factor REUSABILITY to reflect the software quality impacts of reusing
already existing software. We recommend that a periodic formal review of the SQF
be undertaken in order to identify new and emerging practices, mandates and
directions which will require SQO revisions.

1-2

3. The specification of software quality should be based on mission area analysis.

The satellite mission area analysis demonstrated the value and necessity of this
type of software quality analysis [10]. The types of relationships found between
satellite operational requirements and software quality factors underscore the value of
mission area specific knowledge. Although expensive, difficult and time-
consumming, detailed software quality mission area analyses will substantially
improve the usefulness and acceptance of the Methodology. Such analyses will also
provide the information required to generate mission area specific versions of the
Framework. In its present form, the Framework is too abstract for use by
individuals with operational concerns. Mission area specific versions should, at a
minimum, use terminology specific to the mission area. An initial starting point
would be to produce mission area specific guidebooks. Future development would
concentrate on the creation of mission area Frameworks.

Based on our review of the Methodology's support tools, we recommended that no
further development work be undertaken on the ASQS.

Finally, we sketched out a software quality research architecture which was suggested
by our study. The resultant capabilities are intended to define a second generation SQM
(Software Quality Maximizer) which emphasizes quality specification and method-specific
measurement. With the exception of modest modifications to QUES, each architectural
component represents a substantial research effort. The architecture is principally
composed of:

1. Deep software quality mission area analyses

2. Development of ESSQU (Experimental System for Software Quality)

3. Development of QUMAX (Quality Maximizer), a support tool for conducting
technical and cost tradeoff analysis

4. QUCOST (Quality Cost), a support tool for determining cost of quality

5. Definition of QUSPECS (Quality Method Specifications) which encapsulate key
quality factor parameters.

6. QUES (Quality Evaluation System).

4.3 Safety and Software Quality

We undertook the following approach in this initial effort to include SAFETY as the
fourteenth software quality factor. First, background reading was conducted in the area of
software safety. Second, two important military standards, one each from the US (MIL-
STD-882B Notice 1) and from the UK (MoD 00-55/1) that are centrally concerned with
software safety were reviewed in detail. Third, the factor, criteria definitions, and metric
element questions from the software quality model were reviewed within the context of
defining Safety.

At this point, a determination was made that considerations of software safety within
the context of the Methodology required the addition of two new criteria for the
VERIFIABILITY factor. Analyzability refers to those characteristics of software which

1-3

allow or facilitate rigorous analysis. Predictability refers to those characteristics of
software which provide assurance that execution results conform to requirements.

Finally, a candidate set of sample metric element questions was created.

4.4 Object-oriented Technology and Software Quality

We undertook the following approach in this initial effort to expand the technological
base of the Framework to include object-oriented technology. First, we identified the key
concepts and assumptions underlying object-oriented software design and development
methods. Second, we identified in the Framework seven software quality factors and 10
software criteria which we believe are strongly or moderately impacted by the use of object-
oriented technology.

The majority of the selected factors are found in the Framework's Design group
(Correctness, Maintainability) and Adaptation group (Expandability, Flexibility,
Interoperability, Reusability). Only one factor (Usability) was selected from the
performance group. The impact of object-oriented technology on each factor (and on their
supporting criteria) is discussed.

Finally, a candidate set of sample metric element questions was created.

5. SUMMARY

This effort has produced a near and medium-term research agenda for Rome
Laboratory's software quality research program. We undertook a comprehensive review of
the RL Software Quality Measurement Methodology and of the Methodology's supporting
tools so that our suggested research agenda would maintain continuity with prior work.
During the course of our work, we concluded that the Methodology suffers from a lack of
conceptual integrity. We believe that this condition, unless corrected, will substantially
impair the acceptance and use of the Methodology. We also noted that the Methodology is
evolving too slowly relative to the rates of change observable in software engineering
practice. Our contribution in this later regard rests in the areas of software safety and
object-oriented technology.

6. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai, "Specification of Software Quality
Attributes", Volumes I, II, and III, RADC-TR-85-37, February, 1985.

[2] James L. Warthman. "Software Quality Measurement Demonstration Project I",
RADC-TR-87-247, December, 1987.

(3] Patricia Pierce, Richard Hartley, and Sullen Worrells, "Software Quality
Measurement Demonstration Project II", RADC-TR-87-164, October, 1987.

[4] Dynamics Research Corporation, "Software Quality Guidebook Validation Results",
Contract No. F19628-84-D-0016, Task 25, CDRLS 104-107, Task 73, CDRLS 104-
110, September 30, 1986.

1-4

[5] Scientific Applications International Corporation and Software Productivity
Solutions, Inc., "Software Quality Framework Issues", TR (Interim) Volume H, 2
June 1989, prepared for Rome Air development Center.

[6] Jeffrey A. Lasky, Alan R. Kaminsky, and Wade Boaz, "Software Quality
Measurement Methodology Enhancements Study Results", RADC-TR-89-317,
January 1990.

[7] AFSC Pamphlet 800-45. Software Risk Management. June, 1987.

[8] Larry Kahn and Steve Keller, "The Assistant for Specifying the Quality of Software
(ASQS) Operational Concept Document, RADC-TR-90-195 Vol I (of two), Sept,
1990.

[9] Software Productivity Solutions, Inc. "Software Requirements Specification for the
Quality Evaluation System (QUES), Contract No. F30602-88-C-0019, CDRL A002,
September 5, 1989.

[10] Douglas Schaus, "Assistant for Specifying the Quality of Software (ASQS) Mission
Area Analysis", RADC-TR-90-348, December 1990.

I-5

SECTION H

SOFTWARE QUALITY MEASUREMENT METHODOLOGY

1. INTRODUCTION

1.1 Specification and Measurement of Software Product Quality

The production of high quality software has become a visible national priority, both
in the private and public sectors [1,2,3]. Software quality can be defined as a set of
partially conflicting technical objectives which need to be explicitly incorporated into
software system requirements and design. Examples of software quality objectives are
reliability, maintainability, and usability. Historically, these quality objectives, often
categorized as non-functional requirements, have been largely ignored, with virtually all
attention being directed to producing software which meets functional requiremeuts. The
result has been near universal dissatisfaction with the operational (both functional and non-
functional) characteristics of newly developed software. This dissatisfaction, coupled with
unacceptable levels of software development costs and schedule, is generally known as the
software crisis. Since virtually all studies conclude that future systems will have software
requirements more complex than current ones, it is likely that software quality issues will
continue to grow in importance.

Initial work in software quality specification and evaluation was conducted within the
defense contracting industry. From the beginning, the objective was to develop a
quantitative approach to quality specification and evaluation. The government's (the Air
Force in this case) interest was to make available to acquisition managers an objective
quality methodology which would support the imposition of measurable, contractually
binding software quality requirements on contractors. The contractor's interest, which
developed separately, was to have a workable and objective methodology which would
help them improve the quality of delivered software systems. The earliest expression of a
broad approach to quantitative software quality specification appears to be Boehm's work
at TRW reported in a 1976 paper [4].

1.2 Specification and Measurement of Software Process Quality

For the past five years, the Software Engineering Institute has been refining a
software process improvement model [5]. The impetus for the model's development was
an Air Force request for a method of evaluating contractor's software development
capabilities. The model defines five levels of increasing software development maturity.
Each maturity level is associated with increased software development capability. Maturity
is maturity of the software development process. The hypothesis underlying this model is
that the level of achieved software product quality is determined by the quality of the
software development process which produced the software product.

We believe, as do others [6], that the intensity of recent research shifts away from
software product quality and towards software process quality is ill-advised. It would
seem more natural to integrate the two related but differing viewpoints of how to improve
software product quality. The key question to be addressed is to determine the specific
relationship(s) between improvements in software process quality and the resultant

i-1

improvements in software product quality (e.g., to what degree is increased software
product reliability or maintainability due to software process improvements?)

1.3 History of Rome Laboratory Software Quality Research Program

Since 1976, Rome Laboratory (previously Rome Air Development Center) has been
funding the development of the most comprehensive government program in software
quality measurement methodology I. The objective of the methodology has been to provide
acquisition managers with a method to quantitatively specify elements of software quality to
be designed into a system and to measure the levels of achieved software quality when
development is completed. The methodology also contains mechanisms for monitoring the
achievement of software quality goals during the software development cycle.

1.3.1 Guidebook development

The RL software quality program has progressed through several stages. During the
period 1976-1985, basic work in establishing and refining software quality concepts was
undertaken. This first period culminated with the 1985 publication of a three volume set of
guidebooks, Specification of Software Quality Attributes [13], which defined a full
software quality methodology oriented towards Air Force acquisition managers. The
guidebooks were produced by Boeing Aerospace Company.

The methodology can be viewed as having two major components. The structural
component defines a software quality model and the relationships which exist among and
between the structural elements. This structural component is the Software Quality
Framework (SQF). The procedural component defines how the SQF is used to improve
the quality of delivered software. The SQF, together with the procedural component
defines the Software Quality Methodology (SQM).

Volume I of the guidebooks describes how the methodology can be integrated into
the Air Force software acquisition management process. This volume also includes
Boeing's enhancements to an earlier version of the underlying conceptual model and
importantly outlines a suggested overall specification methodology. Volume II describes in
detail the full software quality specification methodology. Volume III presents the quality
evaluation procedures which yield quantitative indications of achieved software quality for
both intermediate and final software products. The guidebooks were written to conform
with DOD-STD-2167.

1.3.2 Validation studies

Since Volumes 11 and III were initial conceptual works, RL funded a series of studies
during 1985-1987 to validate the methodology with actual project data. Unfortunately,
opportunities to apply the methodology to ongoing projects did not arise. Instead, the
methodology was applied retroactively to four prototype decision aids which comprised
the Senior Battle Staff Decision Aids (SBSDA) system. The aids were designed to

1The RADC work has been the starting point for several other software quality measurement efforts, most
notably ESPRITs COQUAMO project [7, 8, 9, ,JI, 111 and the IEEE Standard on Software Quality
measurement [121.

11-2

demonstrate that artificial intelligence, decision analysis, and operations research techniques
can assist senior AF managers in tactical battle situations. Each of two contractors,
Computer Solutions, Inc. (CSI) and Scientific Applications International Corporation
(SAIC) were assigned two decision aids. The contractors worked in parallel time frames
but independently of each other. These two studies were named Demonstration Projects I
[141 and II [15].

A third retroactive study was undertaken by Dynamics Research Corporation
(DRC)[16]. In this study, the SQM was applied to a segment of the WWMCCS (World
Wide Military Command and Control System) Information System (WIS). One objective
of the WIS study not included in the SBSDA studies was to tailor the methodology
specifically to Ada.

Although not a validation study, an additional review and analysis was conducted
during 1988 by a Software Quality Framework Working Group [17]. The individual
members of the group were primarily RL contractors who had recently worked on SQM
related contracts. Several of the members had participated in SQM validation studies. This
study was managed for RL by SAIC.

1.3.3 Support tool development

Early in SQM development, it was recognized that support tools would be required,
since the total amount of data required by use of the methodology was considerable,
especially at the unit source code analysis level. The first tool, whose development began
in 1981, was a data collection/database system with report generation capability and a
FORTRAN source code analyzer to automate measurement at the source code level.

Over time, the system concept broadened somewhat and the latest version the Quality
Evaluation System (QUES) was developed by Software Productivity Solutions, Inc [20].
QUES is a database system which contains facilities for (1) defining a tailored framework,
(2) providing forms generation and data collection facilities, (3) automatically conducting
quality-oriented source code analysis for Ada, Ada PDL and FORTRAN 77, and (4)
generating software quality evaluation reports.

At the time when the first validation studies were being started, RL also initiated an
effort to develop a tool to facilitate use of SQM by AF acquisition managers. Air Force
acquisition managers often do not possess in depth, application-specific software quality
knowledge. So, the Assistant for Specification of Quality Software (ASQS) was
developed by Dynamics Research Corporation to provide acquisition managers with access
to software quality expertise. ASQS, (pronounced asks) is an expert system whose
domain is the Volume II software quality specification procedures [18, 19]. Another
reason for developing ASQS is that the methodology's technical and cost feasibility
reviews become complex for large development projects and the ASQS provides the
acquisition manager with reasoning and computational support to ease the task of trade-off
analyses. The output from ASQS is a tailored version of the Software Quality Framework
which is exported to QUES.

These tools are discussed in more detail in section 4 below.

11-3

1.3.4 Transition into practice

More recent RL funded activities have focused on transition of the methodology into
(Air Force) practice. A study conducted by Rochester Institute of Technology (RIT)
created a SQM/DOD-STD-2167A cross reference to aid in locating relevant SQM data
inputs within the 2167A documentation structure [21]. The RIT study also provided
frameworks for integrating the methodology within the Air Force's risk management model
(AFSC 800-45), and for integrating the methodology and the AFSC Management
Indicators.

Advanced Technology, Inc. (ATI) conducted an initial mission area analysis of five
Air Force mission areas [22]. For two of the mission areas, domain-specific software
quality knowledge was encoded into expert system rules and added to the ASQS rule base.

In 1991, RL created a Software Quality Technology Transfer Consortium organized
under Cooperative Research and Development Agreements (CRDAs). The initial objective
in forming the consortium was to solve the long-standing problem of validating the SQM
within an environment of ongoing mission critical projects. Initial focus is on validating
the reliability and maintainability quality factors. The consortium is viewed as the initial
step in transition of the methodology into widespread practice.

1.3.5 The present study

The present study is RIT's second RL contract related to the Software Quality
Methodology. Our two contract's have shared the same general objective of devising
and/or recommending improvements to the methodology. We structured the present study
into two tasks. Task 1 is to review the results of the software quality research program
since the publication of the guidebooks (1985 to present), and based on this review (1)
make recommendations for facilitating the transition of the methodology into practice, and
(2) make recommendations for future software quality methodology research.

The methodology has already received considerable critical analysis [7, 14, 15, 16,
17, 21]. Our intent here is to focus on large issues which, if left unresolved, will likely
impede the progress of the methodology's development and impair the rate of adoption by
Air Force acquisition managers.

All of the validation studies referenced above reported numerous and substantial
problematical issues resulting from the attempted use of the methodology. Nonetheless,
each concluded, and in our opinion without justification, that the methodology is valid and
usable. We feel that the Guidebooks which outline the methodology should have been
considered as a first attempt to define a SQM, rather than as a completed SQM
development. The careful reader will detect a tension in our report between the
recommendations for improving the current state-of-affairs and an uneasiness about the
ultimate usefulness of the SQM.

Task 2 recognizes that the software development arena continues to undergo change
since the 1985 publication of the SQM and that the SQM needs to be continually revised so
it remains current and useful. In light of this need, we selected two new developments in
software engineering for initial study which are completely absent from the methodology.
The first is software safety. Unlike the version of the DOD Software Development
Standard in force during the Boeing work on the guidebooks, the current standard, DOD-
STD-2167A, mandates a software safety analysis for systems were malfunctions could
have serious consequences. Thus, we reviewed selected literature on software safety and

1I-4

defined a new software quality factor SAFETY together with two new software criteria and
a candidate set of metric questions.

The second development is object-oriented design (OOD). OOD was not in wide
spread use during the 1982-1985 guidebook creation period. (The same, of course, is true
of the Ada language. Ada has raised the visibility of OOD within the contracting
community). Since OOD is experiencing very rapid technology transition, we believed that
the SQM should explicitly recognize the potential contributions of OOD to improved
product software quality. Thus, we reviewed selected literature on OOD and defined a
candidate set of OOD metric questions related to several criteria and to several factors.

The remainder of this report is organized as a set of descriptions about various
components of the SQM. Each description is followed by an analysis section which
usually also includes recommendations for improvement. Readers with more than a
passing interest in the methodology should have read or have ready access to the
Guidebooks [13], and a basic description of ASQS [18] and QUES [20].

2. SOFTWARE QUALITY FRAMEWORK

A definition of the software quality framework (SQF) is primarily structural and
includes the software quality model, definition of quality factors and the number of
discriminating factor goal levels, criterion, metrics, and metric elements, denotation of
interrelationships among factors and between factors and criteria, and specification of factor
impacts on cost of quality.

2.1 Software Quality Model

The key concept of the framework is a three level hierarchical model of software
quality.

Factors

Criterion Criterion ,I Criterion ,

Measures Measures Measures

Figure 1. Software Quality Model. The level under the
grey bar is usually not viewed as an additional level.

H1-5

The top level is a set of thirteen customer-oriented software quality factors. The
factor set is Efficiency, Integrity, Reliability, Survivability, Usability, Correctness,
Maintainability, Verifiability, Expandability, Flexibility, Interoperability, Portability, and
Reusability. The reader should keep in mind that the quality factors are not perfectly
orthogonal; important relationships exist among the factor set.

In the current version of the SQF, three levels of factor goals are identified: excellent,
good and average. For quantitative goal setting, excellent is mapped into .90 to 1.00, good
into .80 to .89, and average into .70 to .79. The role of these factor goals in the overall
methodology is considerable. For example, at the end of the development, a score is
calculated, in the range of 0.0 to 1.0, which represents how much of a certain quality factor
is actually present in the final product. That final score is then compared to the target goal
for that factor to determine if the contractor has meet requirements. One goal of the RL
Software Quality Technology Consortium is to determine the validity of this approach to
software quality measurement.

The second level is a larger set (twenty-nine) of defining attributes for the software
quality factors. These are termed software quality criteria and reflect technical (developer)
considerations of good software engineering and development practice. For example, the
RELIABILITY software quality factor is defined in terms of three software quality
criteria: accuracy, anomaly management and simplicity. Some criteria are used in the
definition of more than one factor. The reader should keep in mind that the quality criteria
are not perfectly orthogonal; important relationships exist among the criteria set.

The third level is the measurement level. Here, seventy-three metrics are used to
represent the degree to which software quality is present in intermediate and final software
products. Measurements are scaled from zero to one, where a value of zero represents a
total absence of some component of software quality and a value of one represents the
highest achievable (within the context of the SQF) level of a component of software
quality. Each metric is subdivided into one or more metric subsets. Each subset is
concerned with a specific dimension of software quality. For example, the anomaly
management metric is subdivided into seven metric subsets: error tolerance/control,
improper input data, computational failures, hardware faults, device errors, communication
errors and node/communication failures. In this example, each subset measures the degree
to which the software can provide for continuity of operations given the occurrence of
different types of errors and failures.

The metrics in turn are defined by lower level metric elements. The metric elements
are the direct and atomic measures of software quality. There are approximately three
hundred metric elements. In the SQM, most direct measures are acquired by the answers to
binary (yes/no) questions. Since SQM is a quantitative model, yes answers are mapped to
a value of one, no answers to a value of zero. For example, one data point used to assess
the software's design with reference to computational failures is obtained from the
following metric element question:

Are all critical subscripts (supporting a mission-critical function) checked for out-
of-range values before use?

2.2 Technical Interrelationships

The explicit recognition of technical interrelationships among factors and between
factors and criteria in the SQF is unique among software quality models. It provides the
basis for a systems engineering approach to specifying software quality requirements. The

11-6

question to be answered is: given a set of quality factors each assigned a quality level goal,
can these goals be reached? Or, put another way, is this a feasible goal set?

These technical relationships are either positive (beneficial) or negative (adverse). At
the factor level, if factor X positively impacts factor Y, then the presence of factor X will
increase the likelihood of achieving the desired quality goal for factor Y. If the indicated
relationship is negative, then the presence of Factor X will increase the difficulty of
achieving the desired quality goal for Factor Y. For example, their is a defined negative
relationship between the factors Efficiency and Maintainability. That means that it will be
difficult to achieve the target goals if both factors are assigned a level of Excellent (High).
The rationale is that high hardware efficiency is often obtained by use of programming
practices which impair future maintainability. The SQF also defines the relative strength of
the interrelationships in terms of degree of impact. Not all pairs of factors are interrelated.
If they were, a tradeoff resolution of factor conflicts would be virtually impossible. In
many cases, the impact is one to many, so that factor Y above could also represent a set of
factors. Similar reasoning applies to interrelationships between factors and criteria.

2.3 Analysis

2.3.1 Three level quality model

We note that none of the validation studies mentioned in section 1.3.2 above have
questioned the three level structure of the SQF. On close examination, we believe that the
presence of the middle (criteria) level is a major contributor to the overall complexity of the
SQM, and therefore a barrier to statistical validation and a barrier to ultimate contractor
acceptance. An important question to resolve is: what would be the consequences of
eliminating the second level and transforming the SQF into a two level model?

As far as the acquisition manager is concerned, he or she is only concerned with the
factor (top) level.

Analysis of factor interrelationships is made more difficult by the presence of a
criteria level. The network of criteria relationships which directly underlie factor
relationships must be understood and considered by whoever conducts the software quality
specification procedure.

The quality factor evaluation scoring algorithms (simple combinations of criteria
scores) can be modified by changing the weights associated with each criterion. There are
two primary uses of criteria weighting in the SQM. One use is that weights conceptually
allow certain elements of factors to be emphasized in terms of contributions to quality. The
other use represents one suggested way of resolving factor interrelationship conflicts (for
an example, see page 4-37 in Guidebook Volume II). The availability of criteria weighting
impairs the task of validating the SQM, since another source of variability has (potentially)
been introduced.

On the other hand, criteria weighting and criteria interrelationships may provide
valuable design and tradeoff information to the development team.

Recommendation 1. Perform an in depth analysis of the consequences of
retaining versus deleting the criteria level.

U1-7

2.3.2 SQF definition

The three demonstration studies and the Working Group review reported numerous
and substantial concerns with the basic SQF definition. These concerns were typically
semantic issues as the various researchers struggled to make recommendations which
would produce a more consistent, less ambiguous and comprehensive SQF definition. In
light of almost universal concerns of a variety of kinds2, the reluctance on the part of the
SQM community to modify the Guidebook Volume II SQF definition is surprising.

The general rationale for this reluctance, as noted in the Working Group's report
[17], was that since the existing definition had not yet been validated, modifications,
especially those of an expansive type (e.g., add new factors) would only make matters
worse. We are not in full agreement with this point of view.

It is important to keep in mind that the basic SQF definition task was started in 1982.
During the intervening ten years, customers and developers have become substantially
more aware of and more sophisticated about the multidimensional character of software
development. In addition, technology has advanced. We believe that an out-of-date and
ambiguous SQF definition will both limit the applicability and value of the SQM, and
hinder acceptance by the contracting community.

As an example, consider the current SQF definition of the factor REUSABILITY:
relative effort for converting a portion of [currently being developed] software for use in
another application. This is the e view of reusability. However, the DoD and
DARPA have stressed the prime importance of the ijwR1view of reusability. Much of the
strategy outlined in the current DoD Master Software Plan relies on import reusability and
related technical and managerial issues. The DoD/DARPA concept of megaprogramming,
the construction of new software systems based to the greatest extent possible on existing
software, clearly frames the issue. Contractors are being put under pressure to increase
import reusability, but the current SQF definition completely ignores this emerging and
high priority viewpoint. To the extent that import reusability is available on a given
development project, the SQF distorts reality because it does not admit the positive quality
impacts claimed for software reuse. The determination of the final factor goals which the
contractor is being pressured to achieve might be very different if the REUSABILITY
factor was split in export and import reusability.

Recommendation 2. Based on prior evaluations, DoD directions, and
current technology, modify the Guidebook definition of the basic SQF.

2.3.3 Factor and criteria Interrelationships

One of the more valuable concepts in the SQF definition is the explicit recognition
and quantification of software quality factor and criteria specification as a multiple criteria
decision making problem with conflicting goals (although not named as such).

2We ignore the specific concerns which were raised due to reliance on manual data collection and analysis
since the QUES tool provides substantial improvements in this area. It is also important to note that all of
the demonstration project's systems developments were pre DOD-STD-2167. Each contractor, therefore,
was required to expend considerable effort to translate the available documentation to 2167 terminology and
structure. These activities should also be ignored since they are anomalies due to the timing of the
d r projects and are not related to core structural or methodology issues.

11-8

Guidebook Volume II contains several tables and figures which depict, in tabular
form, factor and criteria interrelationships, together with indications of degree of effect.
The intent of these tables is provide the basic information required to perform a tradeoff
analysis for the purpose of adjusting the quality factor goals to arrive at an achievable
quality specification. We believe this is a unique feature and valuable of the RL SQF.

Rationales are found in Volume II for the specified structure and intensity of the
interrelationships. However, at this point in time, the current validity of the
interrelationships is open to debate. The Guidebooks may in part be reflecting 10 to 15
year old software development perspectives and technology. The mandated use of Ada in
increasing numbers of DoD acquisitions offers a bounded and high-priority opportunity to
examine the validity of the interrelationships, both in the current and future SQF versions.

Recommendation 3. Initiate an effort to build an Ada-based software
quality testbed in order to experimentally determine factor and criteria
interrelationships and their associated magnitudes.

2.3.4 Metric questions

In the current SQF definition, each metric has a varying number of metric elements
mostly structured as YES/NO/NA (not applicable) questions. The metric elements
represent a sample of review points asserted to be useful in determining to what extent
specific aspects of quality are present in software. The guidebooks offer no rationale or
methodology for the selection of metric elements found in Guidebook Volume III. The
lack of such rationale hinders contractor acceptance (appearance of arbitrariness, lack of
confidence in correctness of measurements) and impairs the future evolution of the
framework.

Each NA response effectively reduces the sample size which determines the value of
the metric and so reduces the metric's information content. The questions are the same
independent of the target goals specified for the quality factors.

This approach makes little sense. It suggests that the level of software quality present
in the product is identical for all same sized YES subsets of the metric elements for a given
metric X. For example, suppose that metric X is defined by 10 metric elements. For all
combinations of exactly four YES responses, the metric will receive a value of 0.4,
independent of which combination of four questions received YES responses. The
discriminating value of the metric is thus questionable.

A more discriminating metric would be obtained by having one set of questions for
each possible factor level in the SQF definition. The set answered is determined by the
level of the factor goal. This approach maximizes the information content of each metric,
since the number of NA responses should be minimized.

Two implementations are possible. In both cases, three question sets are created. In
one case, only the question set which corresponds to the factor goal level is used. In the
other case, the question sets are cumulative, so that for example, all three question sets
would be selected if the factor goal assigned was excellent. This approach will work even
if the criteria to which the metric is attached is shared across two or more factors with
differing factor goals. In that case, the highest factor goal level determines the maximum
number of question sets to be used. Then, after that number of question sets are answered
and scored, the number of question sets used to report values up the hierarchical model to
the shared criteria is determined by the (differing) factor goal levels.

H-9

The total number of metric elements required for each metric would, in general, not
increase in direct proportion to the number of distinct goal levels in the framework. This is
because (1) the number of NAs would be less and (2) in the cumulative approach, fewer
questions for each goal level would (might) be required.

Recommendation 4A. Develop a rationale and procedure for the selection of
metric element questions

Recommendation 4B. Determine the cost/benefit of creating, for each
metric, one set of metric element questions which reflect the technical
requirements necessary to achieve each possible factor level.

3. SOFTWARE QUALITY METHODOLOGY

3.1 Determine Quality Goals

The Volume II quality specification methodology is designed to be used in the early
stages of system definition. In brief, quality specification is performed as a four stage
procedure. The first step in the software quality specification procedure is to identify
system functions which will be supported by software. Although the guidebook contains
an example functional decomposition for C2 applications, the guidebook provides no
general guidance on how to decompose systems intofiunctions.

In the second step, the functions are reviewed in order to determine which quality
factors are applicable A target quality goal is then allocated to each factor. In general, only
a subset of the top level quality factors will be assigned to each function. Information
needed to assign quality goals is fused from the system description (RFP, A-Spec), a
quality survey of the customer and likely users, and any existing quality assignments from
similar systems. At the end of the second step, then, an initial software quality goal
specification is available. This specification is typically recorded in matrix form, where the
value of each non-empty cell represents an initial quality goal for a (system function,
quality) pair. Empty cells mean that a specific quality factor was not applicable or not
important to a specific system function.

3.2 Determine Technical Feasibility

In the third and fourth steps, the initial quality goals are reviewed for technical and
cost feasibility.

Factor and criteria relationships are used in the methodology to adjust the initial factor
goal matrix until an achievable (feasible) set of factor goals is reached. Often, there is more
than one set of adjustments which will lead to a feasible set. The guidebook provides no
guidance on how to revise the initial quality goals based on factor and criteria
interrelationships.

The adjusted factor goal matrix is then reviewed to determine the relative net
cost/benefit of applying the SQM to a software development effort. Net cost includes the
additional costs associated with specifying quality requirements, allocating those
requirements to more detailed levels of requirements and design, designing and building
quality into the product, and evaluating the achieved quality levels. Net benefits include

11-10

increased awareness of quality throughout the life-cycle, early problem detection, fewer
defects, reduced effort, and higher quality products.

Quality factors are considered within the context of how they impact costs; i.e.,
positively or negatively. Volume II contains suggested relative cost ranges for each
factor's cost impact on each of four life cycle acquisition phases: demonstration and
validation, full-scale development (Pre CDR), full-scale development (post CDR), and
Production and Deployment. In addition, positive and negative factor interrelationships are
also analyzed for cost/benefit impact. After the cost/benefit analysis has been completed,
the guidebook states that quality goals should be reviewed for life-cycle cost considerations
and revised if necessary. The guidebook provides no guidance on how to revise the initial
quality goals based on cost considerations.

Recommendation 5. Create the missing guidance sections and revise
Volume Hl accordingly.

3.3 Measure Achieved Quality

The Volume III quality evaluation methodology is designed to be used both during
software development for monitoring of software quality goal progress and at the end of
development activities to assess achieved levels of software quality. Quantitative measures
of software quality are calculated by an aggregate scoring algorithm. Values from the
model's lowest level (metric elements) are averaged and aggregated up to the metric level.
Metric values are averaged and aggregated up to the criteria level. Factor scores are then
calculated by the weighted sum of that factor's defining criteria.

3.4 Analysis

3.4.1 Determine quality goals

A process of ad hoc identification of system functions via functional decomposition is
too subjective and will introduce undesirable variance into the SQM. The same subjectivity
is present in assigning factors and allocating quality goal levels.

One way of minimizing variance is to develop generic, domain specific quality
specifications. (Volume II presents a generic functional decomposition for the Command
and Control domain.) Although relevant quality factors are allocated to functions, no
quality goal assignments are shown.

A set of initial generic functional decompositions for five Air Force mission areas
(Armament, Avionics, C3 , and Missile/Space) was developed for RL by Advanced
Technology, Inc. (ATI) [22]. The generic decompositions were part of a larger mission
area analysis study aimed at identifying mission and system characteristics that impact
software quality in the Intelligence function of C3 and in the Satellite mission area. The
software quality findings were expressed in the form of expert system rules and were later
incorporated by into the ASQS support tool. With access to mission area specific software
quality information, ASQS is then usable by an acquisition manager for assigning quality
goals to factors.

Given the embryonic development stage of the ASQS's knowledge base,, the AT
study cautioned against reliance at this time on using ASQS for assigning goals to factors.

II-l11

We agree with this assessment and suggest that additional mission area domain analyses be
performed in order to develop more detailed knowledge about the software quality
requirements for these mission areas. The results of the domain analyses could be used to
develop more detailed functional decompositions and to develop corresponding generic
factor goal assignments.

Recommendation 6. Initiate additional mission area domain analyses.

3.4.2 Determine technical feasibility

The quality factor technical feasibility and tradeoff analysis is a problem imile
criteria decision making with conflicting goals. This class of problem has generally
resisted analytical solution. In the case of the methodology, the conflicting goals are
derived from the factor interrelationships (at the surface level) and from the criteria
relationships (at the deep level). The problem can be stated as:

Maximize the quality goals for a set of factors subject to resource constraints.

The methodology does not explicitly consider resource constraints. The cost/benefit
analysis outlined in the guidebook answers the question: What is the net economic benefit
of applying the methodology to a software development effort? While this is of clear
interest, the output of the analysis is at the macro project level. Thus, the methodology's
consider costs procedure does not directly support considerations of cost when determining
feasible sets of factor goals.

We believe this is a serious weakness in the methodology. A systems engineering
type analysis is required where factor and criteria interrelationships are considered
simultaneously with cost constraints. With the addition of cost constraints, an acquisition
manager can gain a deeper understanding of what factor goal levels are in fact reasonable to
set as software requirements.

A systems engineering approach raises two concerns. First, the
criteria/factor/criteria-factor relationships generate a substantial level of complexity.
Second, costs related to achieving specific levels of quality factors are generally not
available.

The complexity of quality factor/quality criteria interrelationships is apparent in figure
2, which is a representation of interrelationships for the FLEXIBILITY quality factor. This
form of representation was developed by Pierce in the course of conducting one of the
validation projects [15].

11-12

FACTOR CRITERIA

Correctness Consistency
Maintainability Interoperability ITraceabilty

F Generality Positive
Fleibility - Modularity .

(Ease of Change) - Self-Descript. Negative
Simplicity

N

Survivability E Rency ogurabilityIntegrity
Reliability

Figure 2. Factor/Criteria Interrelationships for FLEXIBILITY

Figure 2 depicts seven types of relationships:

1. Positive factors impacting FLEXIBILITY (Correctness, Maintainability)

2. Negative factors impacting FLEXIBILITY (Survivability)

3. Positive criteria impacting FLEXIBILITY (Consistency, Traceability)

4. Negative criteria impacting FLEXIBILITY (Reconfigurability)

5. FLEXIBILITY positively impacting other factors (Interoperability)

6. FLEXIBILITY negatively impacting other factors (Efficiency, Integrity,
Reliability, Survivability)

7. Criteria which define FLEXIBILITY (Generality, Modularity, Self-Descript,
Simplicity)

If one were to produce a set of connected graphs for the complete set of quality
factors and quality criteria, it would be clear that summation over all criteria, factor and
criteria/factor relationships produces a highly complex web of software quality
interrelationships. Some type of computer-based support needs to be provided to assist
individuals in dealing with this level of complexity for multi-criteria tradeoff problems.

Costs of software quality have been largely ignored in formal planning for software
development efforts. Basic research needs to be performed in order to develop a database
of software quality costs. Such cost data could be incorporated into the methodology to

11-13

permit the type of tradeoff analysis described above to take place, to validate the guidebook
cost ranges used in the methodology's cost/benefit analysis, and to form the empirical base
for a COCOMO-like cost of quality model using the methodology's quality factors as the
model's independent variables (quality drivers analogous to COCOMO's cost drivers.

Section 4.1.4 of Volume II contiins Figures showing the approximate quality factor
impacts on development costs over each of the four major acquisition phases. The
guidebook offer no rationale for the suggested cost percentage values. The lack of such
rationale hinders contractor acceptance (appearance of arbitrariness, lack of confidence in
correctness of cost estimates) and impairs the future evolution of the framework.

Recommendation 7A. Initiate an effort to develop a tradeoff assistance tool
which would provide support for resolving factor/criteria interrelationships
subject to cost constraints.

Recommendation 7B. Initiate an effort to collect basic cost of quality data.

Recommendation 7C. Initiate an effort to develop a cost of quality model.

4. SUPPORT TOOLS

4.1 Assistant for Specifying the Quality of Software

The Assistant for Specifying the Quality of Software (ASQS) is an expert system
whose principal objective is to facilitate the transition of the SQM into acquisition
management practice. The underlying strategy to accomplish this objective was to provide
facilities which partially automated the software quality specification process as outlined in
Guidebook Volume II. The ASQS was developed by Dynamics Research Corporation
during the period 1985-1990. In certain areas, DRC incorporated their interpretations and
extensions to the specification process based on findings from their SQM validation
contract. The current version of ASQS should be considered as a proof-of-concept
demonstration.

The rationale which lead to the development of the ASQS was that system acquisition
managers are typically unfamiliar with software quality concepts and technology. So, they
would need assistance in translating their knowledge of software-intensive system
characteristics and requirements into a software quality specification. In addition, the SQM
technical and cost feasibility analyses would likely be sufficiently complex that computer
support would be required for all but the simplest systems.

In order to support the first part of the quality specification process, identify
functions and assign initial quality goals, the long range plan for the ASQS included
parallel efforts to conduct domain analyses in Air Force mission areas. The domain
analyses were to yield two categories of relevant information which would be added to the
ASQS's knowledge base.

One category is generic functional decompositions. The first step in the quality
specification process is identify functions. In the absence of a complete generic
description, too much variability across systems in the same mission area would be
experienced. Functional decompositions were developed for four major mission areas.

The other category was software quality analyses to determine the relationship
between operational requirements of a system and corresponding software quality

11-14

requirements. This information is used to support the generation of the initial
function/factor goal matrix. Again, in the absence of such application-specific information,
quality specifications would tend to be to subjective and incomplete. The initial attempt to
conduct a software quality focused domain analysis yielded results (albeit incomplete) for
the intelligence and satellite mission areas.

The ASQS strategy for assigning initial goals to factors is to accumulate evidence that
a quality goal is implied from a variety of data sources. The data are fused using a heuristic
algorithm which weights the data with degree of importance factors. The data sources
include (a) system and software characteristics which may be implied from mission area
and operational environment characteristics, (b) development characteristics (e.g., Ada),
quality survey data from customers and users, (c) mission area analyses, and (d)
application specific quality concerns which may be known to acquisition managers.

Another important source of data is the ASQS user. In order to acquire as much
information and evidence as possible, the ASQS guides the user through a structured
question-answer dialogue. The ASQS will only ask questions specific to the selected
mission area and only for information which ASQS cannot infer from the other available
sources and questions already answered. The sequence of questions is guided by the
user's responses. Such a facility is generally regarded as a 'smart interface'.

After the initial goal matrix is complete, the ASQS conducts the technical feasibility
analysis. The actual method used was developed by DRC and documented in [CDRL 5 of
reference 16]. The ASQS user is presented with the initial goal matrix annotated to show
ASQS suggestions for revision. If desired, the user can override the ASQS suggestions.

The last step in the specification process is to review the goal matrix for cost
considerations. This analysis is limited to informing the user that, in some cases, there is
sufficient evidence that an adverse factor relationship(s) exist. The implication is that it
may be excessively costly to achieve specified factor goals. The final factor matrix is then
produced.

At any time during the specification process, the user can ask WHY or HOW and
receive explanations from ASQS.

ASQS uses the final goal matrix to generate a tailored version of the SQF for export
to the QUES tool. The tailoring process consists of selecting all the criteria implied by the
set of selected factors and selecting those metric questions (which define the criteria) most
relevant to the final quality specification within the context of what the ASQS knew and/or
was told about the system to be developed. Since the SQM is intended to be used for
project monitoring (as well as final product quality assessment), the ASQS will generate a
tailored version of the SQF for each development life-cycle phase.

Interested readers should consult the ASQS Operational Concept Document [18] and
the ASQS User's Manual [19] for additional ASQS features.

4.1.1 Evaluation: core functionality

In our opinion, an expert system is not required to accomplish the transition of the
SQM into acquisition management practice. First, an expert system such as ASQS needs
deep world knowledge if it is going to perform adequately on real projects. Based on an
examination of the ASQS rule base, we concluded that, at the present time, ASQS has
acquired only surface world knowledge. The inferences that create the initial factor goal

11-15

matrix are very elementary; i.e., ASQS is not very smart about factor goal allocation. Deep
world knowledge about software quality requirements for specific mission areas is
probably available only from the results of deep domain analyses. This is especially true if
one wishes to allocate quality goals to the lower level (CSU) software designs.

Once deep domain analyses are available, what is to be gained from encoding the
domain knowledge into an expert system? Generic domain specific functional
decompositions together with factor goal assignments will then be available. Given the size
of the domains being contemplated, and in many cases the substantial differences in system
requirements and system architectures, continued development of the ASQS rule base must
be considered a high risk development effort.

The impact of any desired changes on the generic quality specification could be
assessed with the tradeoff assistance tool (recommendation 6A). There is no compelling
reason no compelling need to use an expert system to reason about any potential ripple
effects on the generic specification. While certain other functions of the ASQS might very
well be worth preserving (e.g., smart tailoring of the SQF), it is just as likely that non-
smart tailoring, together with an increasing number of individuals familiar with the SQM
technology will suffice.

As far as the technical/cost feasibility process outlined in section 3.4.2 above, this
clearly appears to be a computable problem not one especially well-suited for an expert
system.

Recommendation 8. Stop development work on the current ASQS concept.

Recommendation 9. In the event that recommendation 8 is not accepted,
determine the scope of the ASQS knowledge base which would be required to
generate meaningful mission area specific factor goal assignments.

4.1.2 Evaluation: current implementation

In the event that our recommendation to stop development work on the ASQS is not
accepted, we wish to stress the necessity of abandoning the current ASQS implementation
as the baseline for future work. At the time when work was started on the ASQS, Lisp
machines, such as the Xerox 1186, were still popular and the Xerox version of Lisp,
Interlisp D, was considered an attractive Lisp development environment. EMYCIN, which
is essentially the classic expert system MYCIN stripped of its domain knowledge, was and
still is a popular expert system shell. However, as the price/performance levels of personal
computers and workstations steadily improved, and expert system technology became
popular, more contemporary and functional expert system development environments
became available. Following are the rationale for our recommendation to abandon the
current ASQS implementation. In the next section, we present our reasons for
recommending Nexpert Object' as a future development system.

First, the Xerox 1186 is a dead platform (no longer marketed) with non-competitive
performance. Second, the software is essentially non-transportable. Third, there are no
built-in high-level graphic user interface generation facilities in Interlisp D. We found
approximately 50% of the total ASQS Lisp code (and perhaps 50% of total development
effort) dedicated to the graphic user interface. Fourth, the use of EMYCIN as the inference
engine limits rule base representation, design and performance options. EMYCIN rule
bases cannot be partitioned. So, as the rule base grows in size, ease of maintenance will

11-16

decline rapidly. Use of the ASQS showed that performance on the current 380 rule system
is only minimally acceptable. This is due to a lack of search control options in EMYCIN
and the low performance of the Xerox 1186. Performance on an expanded base of
thousands of rules would be unacceptable. Fifth, EMYCIN/Interlisp provides no
meaningful high-level expert system development support (no graphical representation of
the knowledge base, no graphical dynamic traces of program execution). Consequently, an
ASQS with an expanded rule base of thousands of rules would be extremely difficult to
validate. Sixth, none of the advantages of open systems architecture are available.

4.1.3 Evaluation: future implementation

Nexpert Object3 is a contemporary, comprehensive development environment for
expert systems and other knowledge-based applications. It is in wide-spread general use as
well as in use by the military. For example, Nexpert Object is being used by Northrop in
the development of the US Air Force's ATMCS system (Advanced Tooling Manufacture
for Composite Structures). Following is an overview of Nexpert Object's advantages.

High level of portability.

Nexpert was developed in the C language with portability a major design goal.
There is a version of Nexpert for virtually any of the platforms currently in wide
spread use. Recently, Open Interface', a portable graphics user interface (GUI)
toolkit was added to the product line. A GUI developed on one platform using Open
Toolkit can be ported across different platforms and operating systems. Thus, entire
Nexpert applications become portable.

Open Architecture.

Nexpert provides a bridge to several database systems (including Oracle) and to
Macintosh's Hypercard. In addition, the Nexpert system architecture allows
Nexpert to be the system's controlling software or allows Nexpert to be embedded
within and controlled by another application. The later capability is provided by the
Application Programmer's Interface. This interface supports both C and Ada.

Object orientation

This architecture feature provides the capability to separately structure the knowledge
base and the rule base, thus facilitating evolution of both and also increasing
comprehension of larger applications. All of the advantages of classification and
inheritance are made available to the designer. In addition, the designer is given
options to control the inheritance mechanisms and thereby improve performance.

Partitionig

Nexpert provides two mechanisms to group related rules and to define separate
knowledge bases. A knowledge island is an implicit grouping of rules. The
systems determines grouping by identifying rules with the same hypotheses or with
common LHS (conditions) data. The value of this mechanism is that Nexpert's
inferencing mechanisms attempt to fully process one knowledge island at a time.
The provides the designer with a way to modularize the application at the rule level.

3Nexpert Object is marketed by Neuron Data, Inc., 156 University Avenue, Palo Alto, CA. (415)-321-4488.

11-17

A knowledge base is an explicit grouping of objects, classes, properties, rules and
knowledge islands. Knowledge bases are loaded into memory as needed. This
capability is especially valuable in larger applications which may have to process
several relatively applications domains. For the ASQS, each mission area might be
designed as a separate knowledge base. Application evolution is improved as well
as processing performance.

Inferencing

In Nexpert, rules are symmetric. This means that the rules do not have to be
designed for either forward chaining or backward chaining. Nexpert will select the
appropriate search strategy based on the context of the problem. In addition, there
are several search design options and a rule priority mechanism to improve
performance. Nexpert also supports opportunistic and non-monotonic reasoning.

Development support

The rule and knowledge bases are entered on forms. Graphic facilities are available
to visualize the structure of the rule and knowledge bases and also to support
execution tracing of rule processing.

In order to take full advantage of Nexpert Object's capabilities, a Nexpert
implementation of the ASQS would require a total redesign. However, the rule base is
relatively small and GUI generation would be accomplished by either toolkit access to the
host's native GUI functions or by use of the portable Open Interface toolkit.

4.2 Quality Evaluation System

QUES is an object-oriented database system which can generate hierarchical data
structures useful in representing software quality definition and evaluation models. QUES
is not limited in scope to the SQF; other arbitrary frameworks can be designed. Although
precursors to QUES were designed solely as data collection and data evaluation tools for
the SQF, QUES also has a capability to define a fully tailored version of the SQF. Thus,
QUES can operate standalone and does not require ASQS to export a SQF definition.

QUES is capable of performing quality evaluations (scoring of questions and
aggregating results up to the factor level according to the Guidebook Volume IM procedures
or any other hierarchical-based calculation procedure) at each of the four levels of DOD-
STD-2167A system description (System, CSCI, CSC, CSU) for each of the nine DOD-
STD-2167A life cycle phases. This storage and reporting facility supports the use of the
SQM as a life-cycle monitoring method.

As an object-oriented database, QUES exhibits those capabilities and advantages
associated with this class of advanced database systems.

QUES analytical capabilities should be upgraded with statistical models of software
quality as they become available from the RL Software Quality Consortium.

II-18

5. SUMMARY

This section presents a summary of our findings organized around three major
observations.

1. The Software Quality Methodology suffers from a lack of conceptual integrity.

On review, virtually every component of the SQM is open to criticism due to
the presence of arbitrariness or subjectivity. The underlying SQM hierarchical
model contains a second level layer which is outside of acquisition management
concerns. Guidebook Volume II, the core of the SQM, is not fully specified and
therefore open to undesirable interpretation and skepticism. Volume II also contains
unsupported assertions concerning factor and criteria interrelationships and their
respective magnitudes. The metric questions, the only direct points of measurement
in the SQM, are a mixture of design checklists, development standards checklists
and 'true' metrics (e.g., measures of program structure). Since the metric questions
are the lowest hierarchical level in the model, their non-homogeneity implies that the
higher levels of the model also reflect divergence from the goal of direct product
measurement. The lack of a method for selecting metric questions, the equal
weighting of metric questions in the scoring calculation, and the availability of
criteria weighting cast doubt on what is being measured and to what extent the
reported scores are meaningful.

The net effect of this lack of conceptual integrity is a reduced degree of
confidence in the Software Quality Methodology and an impairment to acceptance
and use.

Some of the issues noted here have been previously identified and analyzed in
the validation studies. A comperndium of issues and discussion is available in [17].
At a minimum, we recommend that more complete procedural guidance be placed
into Guidebook Volume II. A good starting point is the analysis and detailed
recommendations found in [161.

2. The Software Quality Framework is not evolving at a rate sufficient to adequately
reflect the evolution of software engineering practice and DoD software strategy.

In order to be viewed as useful, the SQF must be continually revised in a
timely manner to reflect actual contractor software development practice. In the
contracting community, software development practice is strongly impacted not only
by DoD mandates (Ada) but also by DoD stated areas of emphasis and strategy
(reuse).

The SQF is lagging in this respect. Initial background work on a new
SAFETY factor and on incorporation of object-oriented technology is included in
sections III and IV of this report. Timely attention must be given to import
reusability. It is likely that formal methods will increase in importance and use in
the near term.

We recommend that a periodic formal review of the SQF be undertaken in
order to identify new and emerging practices, mandates and directions which will
require SQF revisions.

11-19

3. The specification of software quality should be based on formal mission area
analysis.

A review of the initial effort in satellite mission area analysis demonstrates the
value and necessity of this type of software quality analysis [22]. Although
expensive, difficult and time-consuming, detailed software quality mission area
analyses will substantially improve the usefulness and acceptance of SQM.

Such analyses will also provide the information required to generate mission
area specific versions of the SQF. In its present form, the SQF is too abstract for
use by individuals with operational concerns. Mission area specific versions should,
at a minimum, use terminology specific to the mission area. An initial starting point
would be to produce mission area specific guidebooks. Future development would
concentrate on the creation of mission specific SQFs.

6. FUTURE RESEARCH

In this section, we sketch out a software quality research architecture which is
suggested by the present study. The resultant capabilities are intended to define a second
generation SQM (Software Quality Maximizer) which emphasizes quality specification and
method-specific measurement. With the exception of modest modifications to QUES, each
architectural component represents a substantial research effort. The architecture is
principally composed of:

1. Deep software quality mission area analyses

2. Development of ESSQU (Experimental System for Software Quality)

3. Development of QUMAX (Quality Maximizer), a support tool for conducting
technical and cost tradeoff analysis

4. QUCOST (Quality Cost), a support tool for determining cost of quality

5. Definition of QUSPECS (Quality Method Specifications) which encapsulate key
quality factor parameters

6. QUES (Quality Evaluation System)

6.1 Architecture

This section sketches out how the software quality maximizer architecture is
envisioned as a means of increasing the quality of delivered software products.

The mission area analyses are primarily needed to identify mission specific quality
requirements and their respective ideal quality goal targets. Secondarily, these mission area
studies can be used to develop mission specific SQFs.

ESSQU is an experimental Ada software testbed intended to help determine the real
world interrelationships which exist among the software quality factors. These empirically
defined interrelationships define the central logical driver of QUMAX.

11-20

The ideal quality goal targets from the mission area analyses are input to the
QUCOST tool to determine an overall cost of quality and to allocate the overall cost to the
quality factors by lifecycle phase.

The QUMAX tool then determines an internally consistent quality factor set. Iteration
is likely at this point as sensitivity analyses are used to determine maximally achievable sets
of quality levels under different funding level assumptions. The output is the initial quality
specification (or sets of specifications for later use under different funding scenarios) for a
specific mission area. (This process is carried out to the same level of system description
[CSCI, CSC, CSU] as was developed in the mission area analyses.)

The QUSPECS relate factors to specific software engineering practices or methods
known to have positive effects on software quality. The general form of a QUSPEC
template (here oversimplified) is:

Quality Method Specification (FACTOR);

goal level;
life cycle phase [development];
method,

required resources,
manpower (size),
schedule (size),

measures;

End QMS (FACTOR);

The QUSPEC concept is an attempt to relate concretely the achievement of quality
to methods and their respective average costs and schedule requirements. A system size
parameter is used to calibrate required resources to estimated system size.

At this point, the acquisition manager and the development contractor discuss the
contractor's plans for software quality related tasks during the initial life-cycle phases. The
plans are expressed in terms of QUSPECs. The QUSPECs and the QUCOST results are
exported to QUES, which accesses the mission area quality specification and generates a
tailored SQF for the lifecycle phase(s) whose quality plans are completed.

Note that in the Software Quality Maximizer methodology, measures are specific to
factor/goal level/life cycle phase/method. This is done to increase the expected information
value of the measurements. In addition, actual resource consumption is compared to
expected resource consumption (estimated by) QUCOST. The former is analogous to
metrics while the later is analogous to indicators.

As the contractor proceeds through the design phases of the lifecycle, more specific
QUSPECs are used by QUES to generate additional phase dependent SQFs. Checkpoint
measurement at both levels continues to take place.

6.2 Philosophy of Use

We have knowingly omitted commentary on whether or not this approach can be
considered a software quality measurement methodology. The careful reader who is
familiar with the RL SQM will see opportunities for using the approach described here in a
quantitative manner. The final factor goals can be translated to numeric ranges, the
method-specific measures can be treated in the same way as the SQM's metric/question

11-21

structure, and scores can be developed and compared to goals. This philosophy has been
termed the aggregate scoring model [21].

A different philosophy will place emphasis not on achieving acceptable scores but
rather on executing the methods at high levels of software development practice. One can
still use a question checklist but as method exit criteria rather than as inputs to a scoring
algorithm. Something as straightforward as the requirement to document an instance of
non-compliance with the exit criteria and then to require a go/no go decision by the
customer's representative can be an effective driver of software quality improvement. This
point of view is in sympathy with the requirements compliance 4 model [21].

7. LIST OF RECOMMENDATIONS

Recommendation 1. Perform an in depth analysis of the consequences of retaining
versus deleting the criteria level (section 2.3. 1)

Recommendation 2. Based on prior evaluations, DoD directions, and current
technology, modify the Guidebook definition of the basic SQF. (section 2.3.2)

Recommendation 3. Initiate an effort to build an Ada-based software quality testbed in
order to experimentally determine factor and criteria interrelationships and their associated
magnitudes. (section 2.3.3)

Recommendation 4A. Develop a rationale and procedure for the selection of metric
element questions. (section 2.3.4)

Recommendation 4B. Determine the cost/benefit of creating, for each metric, one set
of metric element questions which reflect the technical requirements necessary to achieve
each possible factor level. (section 2.3.4)

Recommendation 5. Create the missing guidance sections and revise Volume II

accordingly. (section 3.2)

Recommendation 6. Initiate additional mission area domain analyses. (section 3.4.1)

Recommendation 7A. Initiate an effort to develop a tradeoff assistance tool which
would provide support for resolving factor/criteria interrelationships subject to cost
constraints. (section 3.4.2)

Recommendation 7B. Initiate an effort to collect basic cost of quality data. (section 3.4.2)

Recommendation 7C. Initiate an effort to develop a cost of quality model.

Recommendation 8. Stop development work on the current ASQS concept. (section 4.1.1)

Recommendation 9. In the event that our recommendation 8 is not accepted, determine
the scope of the ASQS knowledge base which would be required to generate meaningful
mission area specific factor goal assignments. (section 4.1.1)

41t has been suggested that adherence is a more suitable term than compliance.

11-22

8. REFERENCES

[1] DoD Critical Technologies Plan, Report for the Congressional Committees on Armed
Services, 15 March 1989.

[2] HR Subcommittee on Investigations and Oversight, Bugs in the Program, April, 1990.

[3] Jane Siegel, et. al., National Software Capacity: Near-Term Study, Software
Engineering Institute, CMU/SEI-90-TR-12, May, 1990.

[4] Barry Boehm, J. R. Brown and M. Liplow, "Quantitative Evaluation of Software
Quality"' Proceedings of the 2nd International Conference on Software Engineering,
IEEE, September, 1976, pp. 592-605.

[5] Watts S. Humphrey, Terry R. Synder and Ronald R. Willis, "Software process
Improvement at Hughes Aircraft", IEEE Software, (8,4), July, 1991, pp. 11-23.

[6] Richard DeMilo (interview), "Software Engineering Needs Visionaries, Multiple
Approaches", IEEE Software, (8,1), January, 1991, pp. 92-93.

[7] Barbara Kitchenham, 'Towards a constructive quality model Part I: Software quality
modelling, measurement and prediction", Software Engineering Journal, July, 1987,
pp. 105-113.

[8] Barbara Kitchenham and Lesley Pickard, 'Towards a constructive quality model Part
II: Statistical techniques for modelling software quality in the ESPRIT REQUEST
project", Software Engineering Journal, July, 1987, pp. 105-126.

[9] Barbara A. Kitchenham and John G. Walker, "A quantitative approach to monitoring
software development", Software Engineering Journal, January, 1989, pp. 2-13.

[101 S.G. Linkman, "Quantitative monitoring of software development by time-based and
intercheckpoint monitoring", Software Engineering Journal, January, 1990, pp.43-49.

[11] Poul Gray Petersen, et. al., "Software Quality Drivers and Indicators", Proceedings
of the 22nd Hawaii International Conference on Systems Science, IEEE, Jan. 3-6,
1989, pp. 210-218.

[12] IEEE Standard on Software Quality Measurement.

[13] T.P. Bowen, G. B. Wigle, and J. T. Tsai, "Specification of Software Quality
Attributes", Volumes I, II, and III, RADC-TR-85-37, February, 1985.

[14] James L Warthman. "Software Quality Measurement Demonstration Project I",
RADC-TR-87-247, December, 1987.

[15] Patricia Pierce, Richard Hartley, and Sullen Worrells, "Software Quality
Measurement Demonstration Project II", RADC-TR-87-164, October, 1987.

[16] Dynamics Research Corporation, "Software Quality Guidebook Validation Results",
Contract No. F19628-84-D-0016, Task 25, CDRLS 104-107, Task 73, CDRLS 104-
110, September 30, 1986.

11-23

[17] Scientific Applications International Corporation and Software Prxuctivity
Solutions, Inc., "Software Quality Framework Issues", TR (Interim) Volume 11, 2
June 1989, prepared for Rome Air Development Center.

[18] Larry Kahn and Steve Keller, '"The Assistant for Specifying the Quality of Software
(ASQS) Operational Concept Document, RADC-TR-90-195 Vol I (of two), Sept, 1990.

[19] Larry Kahn and Steve Keller, '"The Assistant for Specifying the Quality of Software
(ASQS) User's Manual," RADC-TR-90-195 Vol II (of two), Sept, 1990.

[201 Software Productivity Solutions, Inc. "Software Requirements Specification for the
Quality Evaluation System (QUES)," Contract No. F30602-88-C-0019, CDRL A002,
September 5, 1989.

[21] Jeffrey A. Lasky, Alan R. Kaminsky, and Wade Boaz, "Software Quality
Measurement Methodology Enhancements Study Results", RADC-TR-89-317,
January 1990.

[22] Douglas Schaus, "Assistant for Specifying the Quality of Software (ASQS) Mission
Area Analysis", RADC-TR-90-348, December 1990.

[23] Birsen Karpak and Stanley Zionts, Proceedngs of the NATO Advanced Institute on
Multiple Criteria Decision Making and Risk Analysis Using Microcomputers", NATO
Advanced Science Institutes Series, Springer-Verlag, 1989.

11-24

SECTION III

SAFETY and SOFTWARE QUALITY

1. INTRODUCTION

Since 1976, Rome Laboratory has been funding the development of a software quality
measurement methodology. During this time and up to the present, this research program
has been the only sustained effort which has attempted to define a methodology to specify
and evaluate software quality at the product level. The current definition of the
methodology is found in a three volume set of guidebooks, Specification of Software
Quality Attributes [14]. The key underlying concept of the methodology is a three level
hierarchical model of software quality. The model is usually referenced as the Software
Quality Framework (SQF). The top level is a set of thirteen customer-oriented software
quality factors. The factor set is Efficiency, Integrity, Reliability, Survivability, Usability,
Correctness, Maintainability, Verifiability, Expandability, Flexibility, Interoperability,
Portability, and Reusability.

The second level is a larger set of defining attributes for the software quality factors.
These are termed software quality criteria and reflect technical considerations of good
software engineering and development practice. The third level is a still larger set of
software quality metrics which are measures of the software quality criteria. The software
quality metrics in turn are defined by lower level metric elements.

The methodology was defined at the time DoD-STD-2167 was in effect. The current
standard is DoD-STD-2167A [13] which requires that a contractor perform a safety
analysis "necessary to ensure that the software requirements, design, and operating
procedures minimize the potential for hazardous conditions during the operational
mission".

Rome Laboratory intends to periodically update the Software Quality Measurement
methodology in order to be consistent with revisions to DoD-STD-2167 and to incorporate
advances in software engineering technology. The aim of this study is to begin definition
of a fourteenth software quality factor SAFETY.

The approach taken to define Safety is as follows. First, background reading was
conducted in the area of software safety. Second, two important military standards, one
each from the US and UK that are centrally concerned with software safety were reviewed
in detail. Third, the factor, criteria definitions, and metric element questions from the
software quality model were reviewed within the context of defining Safety. Fourth, based
on the above, Safety was defined within the Software Quality Framework and a candidate
set of metric element questions were created.

This paper is organized as follows. First, a brief discussion is presented which puts
the requirement for a Safety quality factor in the light of current perspectives. This is
followed by a discussion of the basic objectives of software safety and an outline of hazard
analysis. Next, key military safety standards, MIL-STD-882B Notice 1 and MoD 00-55/1
are overviewed. This is followed by indepth discussions of both standards. It is hoped the
background material will provide the reader sufficient background in order to better
interpret and assess the final section's material on the Safety quality factor.

lIn-I

2. CONCERNS

System failures in real-time, safety-critical applications can result in death, serious
injury, environmental damage or loss of property. Safety-critical systems are those where

computers directly control the release or direction of energies capable of causing
death or injury, and where the computer functions are so deeply embedded or
must operate so rapidly that effective human oversight is not possible [1]

Examples of these applications are found in nuclear-based power generation, avionics and
air traffic control, ground transportation control, and military weapon systems. The
increasing use of software-intensive digital command and control systems in such
environments is generating substantial worry and anxiety in the engineering, computer
science and software engineering communities. The governments of the US, Canada and
Western Europe have correspondingly increased their involvement in these areas by
funding research and by including requirements for hazard analysis and safety verification
in system development standards and regulations.

The general concern is that the scientific and technological base required to develop
trustworthy' systems is not yet fully developed. The use of new technologies often
increases operational risk. This risk increase becomes more pronounced when attempts are
undertaken to use new technology (digital control systems in this case) and go beyond the
accumulated experience base in some specific environment, safety-critical or otherwise.
Even if digital control systems are being used only to replace more traditional mechanical or
analogue control systems, the different and possibly unfamiliar failure modes of digital
control systems may become problematical in regards to the design of fail-operational, fail-
soft, or fail-safe mechanisms. One such different failure mode is a sudden complete failure
(system hang-up), accompanied by unpredictable machine and data states.

Nonetheless, the lure of soft logic, with its advantages of change, information display
flexibility and small, light weight, low power consumption platforms, is beginning to cause
the proliferation of digital control systems in safety-critical environments. Many
individuals familiar with the issues have concluded that the probability of catastrophic or
serious accidents involving digital command and control of safety-critical systems is
already too high2'3.

In reaction to this state of affairs, the field of software safety engineering is beginning
to emerge. Software safety engineering's foundations are based on classical safety
engineering, especially the techniques collectively used to identify, categorize, prioritize

1David Parnas first used the term trustworthy when applied to high-integrity (which includes safety-critical)
systems. He defines trustworthiness as 1- (probability of an undetected serious flaw remaining in the
software after reviews and tests) [25].
2Perhaps the recent and massive telephone system failures in the US are an ominous warning.
3For the reader interested in following current developments in the safety-critical software field, the
following are recommended: [a] the annual COMPASS (Computer Assurance) Conference held in the US;
sponsored by IEEE, several government and military agencies, and industrial organizations. [b] the annual
SAFECOMP conference held in the UK; organized by EWICS TC-7 (European Workshop on Industrial
Control Systems). TC-7 is the Technical Committee on Reliability, Safety and Security. [c] Risks to the
Public, a compendium of recently reported mishaps generally involving software problems, which regularly
appears in Software Engineering Notes, the regular publication of the ACM Special Interest Group on
Software Engineering. The contents of Risks to the Public are also available in the comp.risks newsgroup
on USENET.

111-2

and analyze safety risks. However, due to the unique problems associated with software-
intensive digital control systems, traditional safety analysis has been extended to include
digital hardware and software. The next section generically describes this extension for
software 4 .

3. Software Safety

3.1 Definitions

Software safety engineering can be viewed as a process whose objective is to
eliminate or reduce the risk that a software fault can cause a hazard by issuing erroneous (or
not issuing correct) commands to the system it controls. This process includes the use of
safety-oriented management practices, hazard analysis, determination of system redesign
and/or safety feature requirements, and stringent V&V requirements. This process should
be viewed both as an independent process which parallels the life-cycle model being used
for development and as a process fully integrated into the life-cycle. The first view is
important so that a continuous emphasis on safety is maintained throughout product
development. The second view importantly recognizes that the safety objective is to create
safe systems of which software is but one component and one consideration.

A hazard is a system state or set of conditions that, when combined with certain
environmental conditions, is precedent to an accident. For example, consider a 4-way
intersection controlled by a traffic light. If the light's digital control system fails for any
reason and the traffic light's signals are all simultaneously green, then a hazardous
condition exists. Note that this does not imply that an accident will definitely occur.

From a finite state machine point of view, a software-controlled safety-critical system
can be in one of three states [27]:

1. a safe state where the outputs of the control system (e.g., commands to hardware
devices, information displays) pose no threats.

2. a hazardous state where the control system's outputs pose a potential threat, and

3. an unsafe state where the control system's outputs cause harm.

Two principal objectives of safety programs then, including software safety
programs, are (1) to prevent the system from reaching a hazardous state, and (2) to
guarantee that if a hazardous state is reached that there is always a state transition from the
hazardous state back to a safe state.

A safety feature is a system design requirement whose purpose is to eliminate
unacceptable safety risks and constrain other less severe risks to an acceptable level. In the
traffic light example, an appropriate safety feature would be some type of interlock process
which would logically or physically prevent an all green condition. If the mechanism
which supports the interlock process fails, the traffic light would then blink red in all
directions. That is, the system would fail into a safe state. The design of a software-based
or software-controlled interlock mechanism would have to (a) include the possibility of an

4Substntial activity has begun in computer hardware safety analysis as well. For example, see [26] for
recent findings and developments from the VIPER project (Verifiable Intgrated Processor for Enhanced
Reliability)

I1-3

intelock failure, (b) include code to detect interlock failure, and (c) include code to change
all lights to blink red. The (b) and (c) categories of software, together with software
controlling the light, are safety-critical since their failure would create a hazardous
condition.

The next section presents some basic material describing hazard analysis, which is the
starting activity for virtually all system safety programs.

3.2 Hazard Analysis

Hazard analysis is a set of activities which (a) systematically examines systems to
identify potential hazards, their causes, severities and probabilities of occurrence and (b)
establishes requirements for safety features to eliminate or control these hazards.

When a real-time, embedded control system failure occurs, the process or event under
software control typically cannot be simply terminated. Instead, safety-critical embedded
control systems may be designed to:

(a) befail-operational (fault-tolerant) and continue to provide full performance and
operational capabilities, or

(b) be fail-soft and continue to operate but provide either reduced performance,
reduced capabilities or both, or

(c) be fail-safe and limit the amount of damage caused by a failure and provide little
or no operational capability except where necessary to ensure safety.

A hazard analysis is one important input into the overall design decision-making
process. The result of a hazard analysis is actually a safety requirements specification,
which will be subject to safety-related V&V analysis and tests. The safety feature
requirements become additional system requirements, some of which are allocated to the
software requirements specification.

Safety-critical system functions or system components implement safety features.
Thus, the failure of a safety-critical function could give rise to an accident. Safety-critical
software is software which implements or controls safety-critical functions.

Digital control systems can achieve hazardous states because of:

- human error,
- software control error,
- interface error,
- hardware failure, and
- environmental stress

Exhaustive hazard analysis is generally not possible, due to the combinatorics of the above
hazard sources, and the realities of incomplete knowledge and limited investigative and
design resources.

A hazard analysis is the beginning point for system safety considerations. Typically,
hazard analysis follows a well-established mutli-stage approach. As noted previously, each
of the following generic major hazard activities takes place within the context of the overall
system development life-cycle phase.

111-4

1. Preliminar Hazard Identification,

As early as possible, optimally during the concept definition phase, a preliminary list
of system hazards is created. This activity usually makes use of existing safety-related data
available from the documentation and operational experiences of other similar systems, as
well as any available system requirements analyses and safety standards and regulations.

2. Preliminary Hazard Analysis.

Based on the preliminary hazard identification, an evaluation of the major systems
hazards is conducted and safety critical areas are identified. An objective of this phase is to
begin to identify and begin to define system re-design requirements or safety-feature
requirements 5.

Once the hazards have been identified, the link to software safety analysis and the
resultant software safety requirements is generally provided by Software Fault Tree
Analysis (SFTA) [15], Timed Petri Net Analysis (TPNA), [16], Safety Analysis Linkage
Technique, (SALT) [17], or other available modeling and analysis techniques. The hazards
subject to these types of analyses are the hazards resulting directly from software execution
or non-execution, solely or in combination with other factors.

These initial high-level as.,essments are made within frameworks such as shown in
Tables I and 11. As in any other project activity, resources for hazard analysis are limited.
The classification of the identified high level hazards directs resources to areas of greatest
concern. The definitions shown are not intended to be absolutes, but rather are starting
points for tailoring the hazard analysis to the system requirements and operating
environments of interest. Often, the definitions of the probability ranges shown in Table II
are given quantitatively and in frequencies which are meaningful to the task at hand. A
typical approach is that the mid-points of adjacent probability ranges are separated by one
or two orders of magnitude, with the possible exception of the probability of incredible.
The assignment of extremely low occurrence probabilities (e.g., 10 9) may not be
meaningful. In such cases, a qualitative definition may be more useful. A general trend in
the field cautions against over-reliance on the absolute values of the assigned probabilities6.

Most system safety standards categorize hazard severity and probability in similar
ways. As an example, Tables I and II contain definitions taken from the two key US and

51n safety engineering, there is a well-established system safety precedence: (a) design to eliminate risk, (b)
incorporate safety devices if identified hazards cannot be eliminated, (c) provide warning if (a) and (b) are not
feasible, and lastly (d) develop procedures and training. As an example of (a) consider the traffic light
example. The risk (collision) that the safety device (traffic light) substantially reduces could also be
eliminated by (re)designing all roads to be parallel. As an example of (c), consider a tidal wave. In order to
satisfy (a), we would have to constrain habitants to areas that have no boundaries with the oceans. The best
we can probably do here is to provide fast transport to high ground (b) together with an early warning
system (c).
6 A regrettably example of over-reliance was provided by R.P. Feynman, a scientist contributor to the
minority opinion included in the report of the Challenger tragedy. "It appears that there are enormous
differences of opinion as to the probability of a failure with loss of vehicle and of human life. The
estimates range from roughly 1 in 100 to I in 100,000. The higher figures come from the working
engineers, and the very low figures from management. What are the causes and consequences of this lack of
agreement. Since 1 part in 100,000 would imply that one could put a Shuttle up each day for 300 years
expecting to lose only one, we could properly ask "What is the cause of management's fantastic faith in the
machinery?".

111-5

UK military standards discussed in the next section. (The definitions are essentially
identical in both standards)

TABLE I -- Hazard (Accident) Severity

Description Definition

CATASTROPHIC Multiple deaths or system loss

CRITICAL A single death; and/or multiple severe injuries or severe
occupational illness

MARGINAL A single severe injury or occupational illness; and/or
multiple minor injuries

NEGLIGIBLE At most a single minor injury

TABLE II -. Hazard (Accident) Probability (during operational life)

Description Definition

FREQUENT Likily to occur frequently

PROBABLE Likely to occur often

Ok. 'ASIONAL Likely to occur several times

EMOTE Likely to occur some time

IMPROBABLE Unlikely, but may exceptionally occur

INCREDIBLE Extremely unlikely that event will occur,
given assumptions about domain/system

3. System/Subsystem Hazard Analysis

The system hazard analysis determines how system operations and failure modes can
affect the safety of the total system (and subsystems if present). A review is conducted to
assess compliance with safety-related items in the system/subsystem requirements
documents.

The system level study may be preceded by a subsystem and interface hazard
analysis. Functional and component failure analysis are representative techniques used for
system hazard analysis. Functional analysis identifies hazards, at the system and
component level which may result from (a) normal performance, (b) specified degraded
performance, (c) incorrect functioning and (d) absence of function. Component failure
analysis identifies single failures that contribute to known hazards and single failures that
create new, additional hazards.

111-6

4. System Risk Analysis

Hazard risk is the product of hazard severity and hazard probability. The concept of
hazard risk helps to prioritize the allocation of resources in order to maximize system safety
by providing guidance into the design process.

Hazard severity and probability from Tables I and II are combined in Table III to
assign risk classes to all combinations of the two factors. The risk classes are then defined
in Table IV in terms of acceptability of the risk. For example, since class A risks are
unacceptable, a determination that an identified hazard is Class A would mandate that safety
features, of sufficient design to remove the hazard from Class A, become verifiable system
requirements.

TABLE III -- Risk Classification of Hazards (Accidents)

Catastrophic Critical Marginal Negligible

Frequent A A A B

Probable A A B C

Occasional A B C C

Remote B C C D

Improbable C C D D

Incredible D D D D

TABLE IV -- Risk Classification Interpretation

Risk Class Interpretation

Class A Intolerable/Unacceptable

Class B Undesirable, and acceptable only by decision of the safety
review authority.

Class C Tolerable/Acceptable with concurrence of safety review
authority

Class D Tolerable/Acceptable with concurrence of normal project
review

111-7

4. Safety-Critical Software Development Standards (Military)

As noted previously, it has become apparent, both within and outside of the military,
that there is a need for major improvements in software engineering practice as applied to
digital controlled safety-critical applications. The remainder of this paper focuses on the
major US and UK safety standards that set development requirements for software to be
used in safety-critical systems. This section suggests that there has been a noticeable
progression during the past fifteen years of requirements for the development of safety-
critical military systems as evidenced by the scope, depth and technical methods specified
in military development standards. This progression parallels the rapidly increasing
amounts of software used in military weapons systems.

4.1 First generation

In the military arena, the clear and irreversible trend is toward software-intensive
military systems. For some time, several militaries have promulgated design and
development standards which specifically address system safety, including systems
containing digital computers. (Note that these older standards were issued in times when
the amount of software used in weapons systems was far less compared to the present).
Many of these standards are based on long-standing industrial safety practice and include
requirements for safety program definition and management, engineering management and
specific technical analysis.

Some standards specifically mention requirements for software safety analysis, but
these are often stated in broad and general terms. A representative example from the US
military is MIL-STD-1574A (USAF), System Safety Program for Space and Missile
Systems, 15 August 1979. This standard is a tailored application of MIL-STD-882A (see
below) for space, missile and related systems. There are two software requirements, both
almost identical in their wording. One is the requirement to conduct a Software Safety
Analysis. the other to conduct an Integrated Software Safety Analysis. The software
subject to this standard would include, for example, both flight and ground control systems
as well as diagnostics.

4.2 Second generation

The major US systems and software safety standard7 is M1L-STD-882B Notice 1,
System Safety Program Requirements, 1 July 1987. This is an upgraded standard which
originally focused on hardware safety analysis but which now also contains detailed
software safety analysis requirements. Prior versions of MIL-STD-882 specified safety
analysis requirements for Program Management and Control ("100 series tasks") and
Design and Evaluation ("200 series tasks"). The B Revision Notice 1 integrated some new
software analysis safety requirements into the hardware-oriented 200 series tasks, and
added a 300 series set of tasks specifying the required types of software safety analyses8.

7There are also specific safety standards related to software development for nuclear weapons systems. See,
for example, AFR 122-9, The Nuclear Safety Cross-Check Analysis and Certification Program for Weapon
Systems Software, and MIL-STD-SNS (Navy), Software Nuclear Safety.
8Work is underway on the C revision to 882B. The planned major structural change is the integration of
the 300 series tasks into what are now identified as the 200 series system-level tasks. The 300 series will
then disappear as a separate entity. The intent of this change is to preserve the standard's initial system
safety perspective, whose overall cohesiveness was somewhat impaired by the addition of the 300 task
series. Other central changes include (1) placing greater emphasis on system safety testing, and (2)

111-8

The standard also includes a substantial amount of interpretation, implementation and
technical guidance for the three categories of tasks. The "300 series" tasks were designed
to be integrated into the software development process defined by DoD-STD-2167A. Table
V shows the standard's task structure. The standard encourages the tailoring (modifying)
of task requirements to meet specific conditions and circumstances.

introducing a new detailed critical function analysis activity which will focus, in part, on the rigorous
analysis and validation of time-critical execution sequences and dependencies.

111-9

TABLE V Task Structure of MIL-STD-882B Notice 1.

oSeries 100 Tasks

100 System Safety Program
101 System Safety Program Plan
102 Integration/Management of Subcontractors
103 System Safety Program Reviews
104 System Safety Group
105 Hazard Tracking and Risk Resolution
106 Test and Evaluation Safety
107 System Safety Progress Summary
108 Qualifications of Key System Safety Engineers/Managers

Series 200 Tasks

201 Preliminary Hazard List
202 Preliminary Hazard Analysis
203 Subsystem Hazard Analysis
204 System Hazard Analysis
205 Operating and Support Hazard Analysis
206 Occupational Health Hazard Assessment
207 Safety Verification
208 Training
209 Safety Assessment
210 Safety Compliance Assessment
211 Safety Review of Engineering Change Proposals and

Requests for Deviation/Waiver

Series 300 Tasks

301 Software Requirements Hazards Analysis
302 Top-Level Design Hazards Analysis
303 Detailed Design Hazards Analysis
304 Code Level Hazards Analysis
305 Software Safety Testing
306 Software/User Interface Analysis
307 Software Change Hazards Analysis

III-10

4.3 Third Generation

An accelerating movement within the software development research and technical
community is to rely substantially on mathematical-based formal methods to provide a more
rigorous basis for the specification, design and validation of software systems. Over the
past decade, much progress has been made in developing usable versions of formal
methods technology, including in some cases, accompanying toolkits. Formal methods
technology is not currently in widespread use and substantial research and development
issues remain to be resolved. Nevertheless, the UK Ministry of Defence's (MoD) decision
to base their new safety-critical software development standard on formal methods
technology has gathered very substantial attention from the North American and Western
European technical communities. Although the initial draft of the standard was first
circulated to a relatively small audience for comment, several thousand copies had been
requested by the end of 1989.

These new standards are regarded by many as a breakthrough or landmark in safety-
critical software development practice, due primarily to the standard's reliance on and
mandated use of formal methods9. From the MoD's point of view, the technical problems
of system verification and validation were becoming progressively more difficult [1]. The
seemingly endless price/performance gains in computer hardware were now permitting
more complex and numerous functions to be integrated and be implemented economically
under software control. This increase in the level of system and software design
complexity was viewed as increasing the probability that a subtle but potentially
catastrophic design error would remain implemented in a deployed safety-critical system.
Traditional specification and design techniques were judged as having inadequate resolution
power in the military safety-critical environment. Consequently, the decision was made to
employ the higher resolution power of mathematics-based formal methods' 0 . It is
important to note that the standard also relies on more traditional software engineering
technologies such as structured techniques, static path analysis and dynamic testing.

The first standard, MoD 00-55/1, The Procurement of Safety Critical Software in
Defence Equipment, Part I Requirements, 5 April 1991, is the standard receiving most of
the attention. There is also a Part II Guidance (same title and issue date) which provides
interpretation, implementation and technical consultation for selected requirements of Part
I. Also issued simultaneously is MoD 00-56/1, Hazard Analysis and Safety Classification
of the Computer and Programmable Electronic System Elements of Defence Equipment, 5
April 1991. (It is interesting to note that the 00-56 standard makes a reference only once to
software.) Both standards were first issued in 1988 as Draft Interim Standards for
exposure and comment. The most recent issues cited above are classified as Interim
Standards.

9 This is not the first time that a government systems standard has required the use of formal methods. The
DoD's Trusted Computer System Evaluation Criteria, popularly known as the Orange Book, requires formal
proofs for AI level systems that the specifications are consistent with the requirements [291.
I0Another reported reason for the adoption of formal methods was the virtually demise of the traditional
watchmaking industry. That industry had provided the precision mechanisms for the arming and fusing of
explosives. In the UK, the Ordnance Board, who must pass judgement on the integrity of ordnance
explosive control, would not endorse the application of traditional computer software development practices
for the purpose of implementing software-controlled arming mechanisms.J1]

HI-1l

4.4 Analyzability

The design and implementation of safety-critical software will generally be carried out
at a higher standard of practice than the development of non safety-critical software. The
introduction of formal methods into a safety standard raised an important question
concerning the determination as to what is considered acceptable software engineering
practice for safety-critical software. MIL-STD-882B Notice 1 states, (in Appendix A,
Guidance, p. 19), that "the application of good software engineering practices is vital to
designing software which is safe and analyzable. No additional explanation, criteria or
tests are suggested to determine whether a practice is or is not analyzable. Absent specific
definition or guidance, the most likely operational interpretation would be: is the practice
readily amenable to analysis.

In MoD 00-55/1, a standard of analyzability was eventually used to resolve the most
controversial part of the standard found in the prior draft versions, namely the fist of
Unacceptable and Prohibited Practices. These system design and programming practices
were absolutely prohibited. The reason for the prohibitions was not that the practices were
necessarily intrinsically dangerous (although the draft standard did use the term unsafe),
but rather that their use at this stage of formal development technology would impair or
preclude rigorous software analysis and validation. Included in this list were:

* floating-point arithmetic
* recursion
" interrupts, except for a fixed-interval timer
* assembly language
* dependence on parallel asynchronous processing
* multi-tasking
" object code patching
* dynamic program reconfiguration
* dynamic memory management

As might be expected, the banned practices generated considerable comment from the
contracting community which had been routinely using the practices for decades. In order
to clarify the issue, the MoD introduced a strict standard of analyzability and an
accompanying test of compliance in the latest version of the standard. The test is found
within the more detailed discussion of the standard in section 6.1 below.

In certain cases, if the strict standard cannot be met, a somewhat weaker standard of
assurance may be available. This in effect is a relaxation of the strict form of analyzability,
although a close reading of the standard suggests that these practices would still be
considered problematical, both for design and implementation but also for performance
analysis"1 . One effect of the analyzability standard is to render the list of prohibited
practices unnecessary; indeed, the list is absent from the current issue. (In the specific case
of assembly language, its use is now permitted with a recommendation for minimal use,
not to exceed twenty to fifty lines per insert). As formal methods technology develops,

I1Tbe concepts of analyzability and assurance, outside of proof requirements, also reach into considerations
of performance. MoD 00-55 (Requirements)/1 states in section 30.1.3, page 16, "SCS (Safety Critical
Software) shall be designed so that it is easy to justify that it meets its specifications in terms of both
fnctioality and performance. This requirement may restrict the length and complexity of the software and
inhibit the use of concurrency, interrupts, floating point arithmetic, recursion, partitioning and memory
management. MoD 00-55 (Guidance)/l continues, in 30.5.12, "The straightforward architectures produced
according to the requirements for analyzability ... greatly simplify performance analysis.

111-12

additional practices once found on the prohibited list will likely become available for
development use.

In sum, the intent of the analyzability standard is to facilitate and simplify verification
and validation.

4.5 Predictability

An overriding concern of both standards is that the behavior of the software-
controlled system be predictable under all circumstances. This ultimately permits
judgements to be made about the safety of the system and provides the basis for the
system's safety certification and/or acceptance.

At the code level, predictability is enhanced by proving, or more weakly
demonstrating, that the compiled object code implements the semantics (meaning) of the
source code. There are at least three sources of unpredictability at the program level; that is
circumstances where the object code does not implement the source code semantics.

1. Use of an optimizing compiler. Optimizing compilers substitute or rearrange
instructions generated by an earlier compilation pass. Whether the goal of the optimization
is to increase execution speed or reduce memory requirements, the optimization process can
destroy the absolute equivalence between source and object code. Thus, in safety-critical
applications, the use of an optimizing compiler is in direct conflict with the safety principle
of predictability.

2. Unintended side effects of language features and prgramming practices. The
logical consequences stemming from the use of certain language features can also introduce
unpredictability into the execution stream. A typical example occurs in the evaluation of
boolean expressions, where the expression on the right hand side of the logical operator is
a function, which when evaluated can either raise an exception condition or inadvertently
change the value of a global variable (the later could occur if a function's argument has
been declared in out. The execution behavior of the system may be different depending
on whether the logical operator is an and (or) in one case and an and then (or else) in
another case.

3. Undefined language feature implementation. An example here is Ada tasking,
although the issue is the same for most concurrency-related features. Since the compiler
designer is free to use either time-sliced round robin or highest priority first scheduling,
and keeping in mind the many variants of each, unpredictability could arise just due to the
many different compiler implementation choices.

In sum, the danger which may result from these code level sources of unpredictability
argues strongly for the use of restricted language subsets with well-defined, formal
semantics for the development of safety-critical software. Here, we again see the
importance of the analyzability principle, since a program written in a language with formal
semantics is, at least in theory amenable to formal analysis as well as to static analysis. The
later type of analysis, performed at the source level by another program, potentially yields
predictability-related information such as undesirable source code attributes such as
unreachable code, uninitialized variables, and unintended dependencies between input
variables and output variables.

III-13

4.6 Comparison of US and UK Standards

The two standards are in a sense equivalent in that they both attempt to mandate
practices and procedures which have the objective of reducing the probability that the
occurrence of an accident in a safety-critical environment is due to a software deficiency or
failure. Both standards focus centrally on safety-critical software components and basically
ignore non-safety critical software. They both approach hazard analysis in roughly the
same way and each has extensive reporting and safety review requirements12.

There are naturally differences as well. The US standard stresses an overall integrated
systems level approach while the UK standard focuses almost exclusively on software.
The UK standard is somewhat more formal in its administrative and organizational
requirements. In general, more specific and mandated software-related technical
requirements are to be found in the UK standard.

Of course, the major difference is MoD 00-55's mandated use of formal methods and
formal proofs. Only time will tell what the magnitude and consequences of the formal
methods approach will be in the safety-critical domain, but the issuance of the standard
itself is clearly significant. Nothing in the structure or objectives of DoD 882B precludes
the future incorporation of formal methods requirements.

5. MIL-STD-882B Notice 1--System Safety Program Requirements

5.1 Overview

Series 100 tasks establish the requirements for a system safety program and set forth
required organizational structures and reporting requirements. Series 200 tasks are
primarily focused on hazard analyses.

For safety concerns related to software, the standard identifies and defines a subset of
all the system's software which will receive special attention throughout the system
development cycle. That is, the 300 series tasks apply only to this special subset termed
Safety Critical Computer Software Components (SCCSCs):

are those computer software components (processes, functions, values or computer
program states) whose errors (inadvertent or unauthorized occurrence, failure to
occur when required, occurrence out of sequence, occurrence in combination with
other functions, or erroneous value) can result in a potential hazard, or loss of
predictability or loss of control of the system [3].

Typically, SCCSCs interface with safety critical functions in hardware, such as
motion controls or display of safety critical data. Thus, the basic process for initially
identifying SCCSCs is to trace from the safety critical hardware functions to the software
execution path which ultimately controls the critical hardware functions 13. All software on
this execution path whose failure could cause the system to behave in a dangerous or

12These and other similarities are not surprising since there is close informal collaboration on system and
software safety standards between the US and the UK.
13 'Normally, only software that exercises direct command and control over the condition or state of the
haldwae components or can monitor the state of the hardware components we considered critical from a
safety viewpoint", USAF Software Safety Handbook, (18].

III-14

harmful way is considered to be SCCSC. In addition, all functions involved in the creation
of SCCSCs (e.g., creating a table and/or table values) or that use the SCCSCs are also
considered to be SCCSCs.

The standard does not apply to non-SCCSC software. This exclusionary focus on
SCCSCs suggests the possibility that non-SCCSCs could adversely impact the safety
critical software. MoD 00-55 adopts the same perspective. We discuss this important
issue in section 7 following a description of the UK standards.

5.2 Series 300 tasks

This section describes each of the series 300 software tasks in some detail 14. Since
we are concerned here primarily with software issues, no descriptions of the series 100 or
200 tasks are included.

The 300 task series is designed to be integrated with the software development cycle
specified by DoD-STD-2167A. In effect, each of the eight major activities which define the
DoD-STD-2167A development process is expanded to include safety analysis This is a
potentially effective and efficient approach, since the safety analysis is not considered as a
separate, standalone activity.

Task 301 - Software Requfrements Hazard Analysis (SRHA).

The purpose of the SRHA is to develop safety design requirements to be included in
the system and software preliminary design. Input into Task 301 is the Preliminary
Hazards List (Task 201), the Preliminary Hazards Analysis (Task 202), the SSS, the
SSDD, the SRS, the IRS and other previously developed policies and guidelines applicable
to the system. The SRHA takes place during System Requirements Analysis/Design and
may overlap with the Software Requirements Analysis. The standard requires that a
software safety requirements tracking system (e.g., a Safety-Critical Requirements
Traceability Matrix) be established within the configuration management system. An
important outcome of the SRHA is to provide assurance that all system safety requirements
have been translated into software requirements and documented in the SRS.

Task 302 - Top Level (Preliminary) Design Hazard Analysis (TLDHA) 15.

The TLDHA takes place during Preliminary Design. The purpose of the TLDHA is to
allocate the identified safety design requirements from the SRHA into the SDD (Software
Design Document) for each CSCI. Thus, specific hazards are allocated to specific CSCs
which become designated as SCCSCs. One important outcome of the TLDHA is that the
software is preliminarily partitioned into SCCSCs and non-SCCSCs. Analysis is also
undertaken during this time to identify other potential SCCSC software; i.e., software
which directly (e.g., through an invocation) or indirectly (e.g., via a table which a SCCSC
accesses or creates) influences a SCCSC. All SCCSCs identified during TLDHA are
placed under configuration control (entered into the Safety-Critical Requirements
Traceability Matrix).

14 This section closely follows the analysis found in Michael L. Brown, "Software Systems Safety and
Humn Errors," Compass "88 Proceedings of the 3rd Annual Conference on Computer Assurance, IEEE,
1988.

hterm "top-level" reflects DoD-STD-2167 terminology and will likely be replaced in 882C.

111-15

The SCCSCs are prioritized by a safety hazard risk analysis (see Tables I and IV).
Typically, at least all class A and class B (excluding class B Negligible/Frequent) risks
continue to be subject to the full requirements of the standard, although the specifics will
depend on the tailored standard. Preliminary safety test requirements are developed for the
Software Test Plan.

Task 303 - Detailed Design Hazards Analysis (DDHA).

The DDHA takes place during Detailed Design. The DDHA continues the refinement
of the safety design requirements developed from the SHRA and the TLDHA. As in the
TLDHA, additional SCCSCs may be identified. All SCCSCs identified during TLDHA are
placed under configuration control (entered into the Requirements Traceability Matrix). It
is important to note the Detailed Design phase culminates with the Critical Design Review at
which time the software design is supposedly frozen. Thus, any safety design
requirements not included prior to CDR will not likely be implemented. Special attention,
then, should be paid to reviewing the Requirements Traceability Matrix at this time.
Specific safety test requirements, plans and procedures are also developed, as well as
safety-related documentation to be included in the user, operator and diagnostic manuals.

Task 304 - Code Level Hazards Analysis (CLHA).

Page A-22 of the standard specifies the requirements for CLHA. One can view these
requirements as micro, but comprehensive V&V activities applied to the individual
SCCSCs. A variety of inspections, reviews and walkthroughs appear to be required by the
standard, as well as process flow (static path) analysis and other V&V code level assurance
techniques. Specific tests should be developed to verify the correct execution of any
material safety features discrepancies identified during the CLHA. This is undoubtedly an
expensive and time-consuming task for which no specific resource level guidance is
provided by the standard.

Task 305 - Software Safety Testing (SST).

Software safety testing begins at Coding and CSU Testing and continues through
CSC Integration and Testing, CSCI Testing and System Integration and Testing. The
overall objective of SST is to provide assurance that the system will behave in a predictable
and safe manner under all circumstances. In addition to the use of good testing practice,
additional attention will be placed on testing safety critical functions and the SCCSCs. The
test program should incorporate both naturally occurring and artificial boundary conditions
which have repeatedly caused problems in the past. For example, the impact of the sea
level condition on avionics systems, or more generally, unanticipated zero and negative
program variable values. In addition, all credible failure modes must be tested. Many of
these tests would fall within the existing 2167A stress testing requirement (general
requirement 4.3). The overall objective of SST is to provide assurance that implemented
safety requirements accomplish the intent of the specified requirements.

Task 306 - Software/User Interface Analysis (SUIA)

Not all safety hazards may have been eliminated or deemed controllable by the
design/implementation. The user/operator interface is reviewed to ensure that the
capabilities provided by the interface support safe and complementary system operation.
Specifically, the standard requires design recommendations which provide for (a)
unambiguous and complete display of safety critical information, (b) the detection of
hazardous conditions, (c) operator warnings to alert the user to abnormal conditions or

111-16

errors, safe cancellation of a process or event, and (e) safe survival and recovery fro a
detected hazardous condition.

Brown [8] strongly recommends that human factors analysts get involved as early as

possible during the definition and design of safety-critical systems.

Task 307 - Software Change Hazard Analysis (SCHA)

Changes, either during development or post-deployment, may cause an otherwise safe
system to become unsafe. Development changes may be generated from any baselined
software development product or software deficiency reports. Post-deployment changes
should strictly include all software maintenance and software adaptation (evolution)
activities.

The standard requires a strict and comprehensive change analysis which is similar in
principle to regression testing. The (re)application of hazard analysis and testing begins at
the highest specification level that the change effects and proceeds forward into standard's
task sequence. For example, if a change occurs at the system level, the entire sequence of
analyses, Tasks 301 through 306 must be performed. Special attention is paid to the
impact of change on existing SCCSCs and the possibility that new SCCSCs are created in
the process of integrating the change into the system. In the later case, all of the standards
requirements specific to SCCSCs will have to be met.

6. MoD 00-55/1

6.1 Overview

MoD 00-55 Part 1 and Part 2 set forth, in considerable detail, the software
engineering requirements for safety-critical software (SCS)16. All software is considered
to be safety-critical unless shown otherwise by the companion hazard analysis and risk
classification standard MoD 00-56.

The standard requires the use of formal methods for specification, design and
verification in place of, to the greatest extent possible, more traditional and less rigorous
methods. At the present time, several formal methods, most notably VDM [19] and Z [20]
are sufficiently complete, well-developed and understood that they are usable by the
development community. This is not true of all existing formal methods. There is also a
clear need for substantial, long-term formal methods research and development activities.

The general approach employed by the standard is to require formal verifications at
each stage of the life-cycle. Each formal activity along the life-cycle chain that transforms
the initial English statement of requirements into executable code is accompanied by proof
obligations. These are formally stated logical assertions about the properties of the
development object currently being created. Typically, development occurs in a series of
successive refinements. Each refinement generates proof obligations which must be
discharged (proved) to demonstrate correctness.

Discharge of a proof obligation is accomplished byformal argwent which may be a
complete formal proof or a partial proof known as a rigorous argument. In any event, from
an assurance (and feasibility) perspective, it is desirable that tools be used to generate the

16The standard also contains requirements for safety program management.

IHI-17

proof obligations and formal arguments. This becomes more desirable and eventually
necessary as the size of the program increases. One such cool is a proof obligation
generator. This tool embodies the proof theory for the method and will produce the proof
obligations automatically when provided with the formal design. At the present time, a few
proof obligation generators are commercially available, most of which are more available
for formally-based programming rather than formally-based design. Attractive
complementary tools to assist with discharging the proof obligations are theorem provers
(typically interactive assistants) and proof checkers (programs which validate proofs).
Again, only a few such tools are currently available.

The ability to demonstrate proof obligation discharge is the strict test of analyzability
(see section 4.4 above). If a proof obligation for one of the undesirable practices can be
generated and discharged, the practice will presumably be acceptable. Otherwise, it will
remain prohibited unless the less strict test of assurance is acceptable to the safety review
authority.

We see then, that the formal methods requirements are, in toto, beyond the state-of-
the-practice, and in many cases beyond the state-of-the-art. The standard's requirements
were purposely set beyond the current state-of-the-practice/art in order to stimulate research
and commercial activity. Consequently, the MoD does not expect full compliance with the
standard at this time. The language used in Part 2 (Guidance) reflects this expectation. As
the state-of-the-art advances, more stringent compliance will be required.

6.2 Software Development

This section describes in some detail the organization and use of the standard's
required software engineering practices for the development of safety-critical software
(SCS). Figure 1 shows the triangle of reasoning for establishing program correctness.
The overall 00-55 strategy for developing SCS is one of continual validation by the
development team. Each validation is reviewed by a V&V team and then a Review
Committee.

111-18

Validation 1:
equivalence established by
animation and prototyping

rEnglish specification)
(formal specification S

of program J SPECIFICATION L of program

4 /Validation 2:
4 / equivalence established by

$ / proof or correctness argument

€formal specification
of modules Validation 3:

equivalence established by
Validation 5: Validation 4: semantic analysis of code and

formal validation equivalence program proof
of program established by ,

dynam ic testing ssem

code with
F., [([embedded assertions

validated
E pra in compiler to be usedC poga in

target machine

Figure 1. Triangle of reasoning for establishing program correctness. Adapted from [9].

1. Establish an equivalence (animation) between the Software Requirements
Specification expressed in English and the derived Software Specification expressed
in a formal method.

2. Establish an equivalence (formal arguments) between the formal Software
Specification and the derived Module Specifications expressed in a formal method.

3. Establish an equivalence (formal arguments, semantic analysis of source code)
between the Module Specifications and the Sotirce Code).

4. Establish an equivalence (dynamic testing) between the Module Specifications and the
compiled Source Code.

111-19

5. Formally (officially) validate the software (testing) against the original Software
Requirements Specification.

The remaining parts of this section provide more detailed descriptions of each of the five
validations.

Valdai1.

The standard defines animation as the process by which the behavior defined by a
formal specification is examined and validated against the informal (English) requirements.
Animation is concerned with exploring the properties of the formal specification which is a
mathematical model of the behavior of the SCS. The purpose of this first validation is
requirements capture, not verification of the translation process.

Animation is carried out by use of both formal arguments and an executable
prototype. The objectives of the animation are:

(a) to assess the completeness and internal consistency of the formal specification,

(b) to identify incompletely defined functionality or the omission of functionality,

(c) to identify errors in the specification that lead to failure conditions,

(d) to establish the behavioral boundaries of the formal specification, and

(e) to explore and assess extensions and improvements.

Formal arguments are used to show that the safety features specified in the Software
Requirements Specification are present in the formal specification. The executable
prototype, optimally derived automatically from the formal specification, is used to check
the behavior of the specification, testing as a minimum of safety features of the SCS. Other
means of producing the executable specification include translation into a logic
programming language or into a language which supports the abstract data types used in the
formal specification. There is no expectation that the executable prototype will be complete
in all respects. Formal arguments are required to show the equivalence of the executable
prototype to the formal specification. The major difference in this validation between the
00-55 and more traditional standards is the use of formal arguments, as the use of
executable prototypes is established technology.

Yalidalton2.

The requirements for the design process are very comprehensive and include a
number of performance investigations that are outside the formal methods framework. The
design itself, however, is created using a formal method together with proof obligations as
described earlier. The standard emphasizes that the design should facilitate verifiability of
both its functionality and performance requirements. It is here that certain of the previously
prohibited practices may conflict with the emphasis on verifiability via analyzability. Also,
the standard suggests an upper limit of 5,000 source lines to implement an individual
design. An additional design requirement is that wherever possible, SCS should execute
on a processor physical separate from the processor(s) used to execute non-SCS. In cases
where this is not possible (space, weight and power constraints), software mechanisms
can be used to isolate the two categories of software on a single processor. If these
mechanisms are assessed to be safety-critical, they would be developed according to the
requirements of the standard.

111-20

Defensive programming is required to be incorporated into the design. The standard
takes the position that inputs from a formally proved module do not require checking but
that all other inputs should be checked.

Performance analysis is to be carried at the point in the design process where
sufficient detail is available to support high-level performance. Here also the requirement
for analyzability is raised, this time from the point of view that the use of simple,
straightforward architectures, with deterministic scheduling and little or no concurrency
will greatly simplify performance analysis. The standard suggests that hardware resource
utilization (processors, memory, communications channels) should not exceed 50%.

VYalidatin .

The standards consistent requirement for analyzability and behavior predictability
places constraints on the selection of the implementation language. The language, or a
predefined language subset, is required to have the following characteristics:

(a) a formally defined syntax,

(b) a means of enforcing the use of any subset,

(c) a well-understood semantics and a formal means of demonstrating equivalence of
source code to the formal module design,

(d) block structured, and

(e) strongly typed.

At the present time requirement (c) can be met by languages which accept the Formal
Specification of Modules (the Design) in terms of embedded mathematical assertions or
annotations (pre and post conditions). As the code is developed to implement the design,
new assertions about the state of variables can be determined at various "interesting" points
such as entry into a loop construct. Eventually, a chain of assertions is developed. A
semantic analyzer, such as Spade [21] or Gypsy [22] can automatically generate the Proof
Obligations. Discharging the proof is then equivalent to demonstrating equivalence
between the source code and the Design.

The standard requires that programs written in the selected language be analyzable by
static path analysis tools. Static path analysis is a technique which operates on source code
and can determine problem items such as:

(a) control flow anomalies, including unreachable loops, unreachable code, and
loops with multiple exits,

(b) data flow anomalies, for example, the attempted use of unassigned variables or
the non-use of variables which have been assigned a value,

(c) unwanted information flow dependencies (determinable by analyzing the
relationship between input variable values and output variable values).

The static path analysis requirement means that languages containing constructs not
amenable to static path analysis are prohibited. Many popular languages fall into this

HI-21

category including Ada and Pascal. This has stimulated the definition of language subsets
in which unanalyzable constructs have been removed. Two well-known subsets are
SPADE-Pascal [231 and SPARK-Ada [24].

As noted previously, the use of assembly language is acceptable, abut the standard
suggests its use be minimized.

Again, to promote analyzability, the standard requires that structured programming be
adopted as a programming standard.

Yidati .

The standard employs traditional dynamic testing technology for the following
illustrative reasons:

(a) Undetected logic errors may be present in the formal arguments. Such errors
detected by dynamics testing are clearly serious and the standard states this would
generally lead to non-acceptance of the SCS.

(b) Formal Arguments may not have been used in all cases.

(c) Validate conformance to non-functional requirements such as performance which
are not usually the subject of formal arguments

The standard requires the use of random testing in addition to black-box testing. It is
noted in the standard that random testing is a particularly economical means of generating
large numbers of test cases. The black-box tests are compiled by the V&V Team who are
also responsible for conducting the tests. At a minimum, all safety-critical features must be
tested. An automated test harness equipped with a test coverage monitor is required. Tests
on individual modules, except for I/O modules, will take place on the host (development
machine) running a target machine emulator. I/O modules and integration testing are
conducted on the target hardware.

The final validation is the only part of the standard that involves a system level issue.
The crucial role that SCS plays in the deployed system warranted attention at this point.
The integrated hardware/software system is tested by the V&V Team to establish
conformance (equivalence) to the original Software Requirements Specification. Prior to
this time, all development equivalences and testing were along the right hand side of the
triangle, i.e., the formalized side. As noted above, it is always possible that undetected
errors remain on that path or that the initial animation of the formal specification was in
some way incorrect. This last validation attempts to provi&. additional assurance that the
system meets the intent of the English requirements specification.

It is apparent that the specificity of the requirements and the amount of guidance
provided by the standard for the last two (testing) validations is far less than what is
provided for the first three (formal) validations.

This concludes the discussion of existing military standards which focus on software
safety matters. The next section discusses an open design issue concerning the isolation of
safety-critical software.

HI-22

7. Isolation of Safety-Critical Software

In regard to software safety, both of the standards we have examined have as their
beginning points the identification of safety-critical software. Some have argued essentially
that given an analysis which did in fact identify all safety-critical software, there is a non-
zero probability that non-safety critical software could adversely impact the safety integrity
of the system.

Parnas, et.al. [25], have argued that software often exhibits weak-link behavior, i.e.,
unanticipated relationships exist between seemingly uncoupled modules or data files. They
suggest that safety-critical software be isolated on dedicated processors. Both standards
require a separation of safety-critical (SCS) and non-safety critical (NSCS) software. The
preference is separate machines followed by protected logical separation on one machine.

Addy [28] provides a detailed case study which supports the weak-link argument. He
also included a discussion of the design tradeoffs involved in supporting isolation.
Following is a summary of the tradeoffs.

Complete physical isolation on separate machines.

Advantages:

1. SCS would not share program control with NSCS software.

2. SCS would have exclusive use of its data.

3. SCS would not have to compete for resources or services.

Disadvantages:

1. Increased hardware costs.

2. Additional software development and maintenance costs (redundant interface
modules, coordination between SC and NSC hardware.

3. Possibility of timing constraint violations.

Addy concluded that the additional costs and complexity make this first approach not
feasible for most applications.

Separate Safety Process

Approach: dedicated memory is allocated to the safety process (SP). The SP
maintains a separate database of safety-critical variables. Based on the value of these
variables, the SP grants or withholds approval for safety-critical processing to begin. The
monitored variables could be sensor input from the system environment, or status variables
reflecting the state of the hardware or the integrity of software and data. This approach is
based on the concept of a safety kernel, a monitoring and control mechanism analogous to
security kernels in secure systems.

Advantages

1. A relatively small amount of code is needed to implement the SP. This
facilities analyzability and predictability, leading to assurance.

III-23

2. Minimal change to existing code

Disadvantages

1. SP Software development costs

2. SP could become a performance bottleneck for safety-critical executions.

3. The SP is coupled to the other processes that provide it with data. Thus, the
SP is less isolated than if the SP and its related processes were on a separate
machine.

4. The authorized processes could cause corruption and bypass the SP.

5. Overall complexity is increased, particularly since the system requires an
interface to communicate with the SP

No Isolation (Integrafion)

Advantages

1. Should lead to smaller total amount of code which generally impacts all
concerns in a positive manner, particularly overall complexity.

Disadvantages

1. Budget considerations will require that safety-critical software be identified
via analyses of the entire detailed design. Unknown interfaces between SCS
and NSCS may remain undetected.

In the following initial work at defining a SAFETY quality factor, we have adopted
the guidance of the standards that physical isolation of SCS and NSCS is required in the
absence of compelling factors to the contrary.

8. A SAFETY Quality Factor

8.1 Definition

Five of the existing thirteen factors appear most appropriate on which to base a
Framework definition of SAFETY. They are RELIABILITY, SURVIVABILITY,
USABILITY, CORRECTNESS and VERIFIABILITY. Following is a discussion of these
factors and their defining criteria within the context of software safety.

8.1.1 RELIABILITY

RELIABILITY measures freedom from software failure. The guidebook definition is:
extent to which the software will perform without any failures within a specified time
period. High reliability does not guarantee safety. While highly reliable software may
have few failures, if a failure does occur which leads to a catastrophic event, the software
has not met safety requirements and is fact not safe. To the extent that reliability is a part of
AVAILABILITY (a system level factor which includes SURVIVABILITY and
MAINTAINABILITY), SAFETY may be in conflict with RELIABILITY for two reasons.

1II-24

For example, the presence of a safety interlock may interfere with the availability of some
system capability. Another conflict would arise when the system fails to a safe state and all
system capabilities are lost, this being an example of zero availability.

The defining criteria for RELIABILITY are:

accuracy, characteristics of software which provide the required precision in
calculations and outputs,

anomaly management, characteristics of software which provide for continuity of
operations under and recovery from non-normal condition, and

simplicity, characteristics of software which provide for definition and
implementation of functions in the most noncomplex and understandable manner.

All three of these criteria seem relevant to safety-critical operations. V&V typically
reviews accuracy of algorithms and output values. Safety features are very often designed
to deal with anomalous circumstances. Simplicity supports analyzability, a high-level
principle applied to safety critical software

8.1.2 SURVIVABILITY

SURVIVABILITY is the extent to which critical softwate functions will be supported
when a portion of the system is inoperable.

The defining criteria for SURVIVABILITY, in addition to anomaly management, are:

autonomy, characteristics of software which determine its non-dependency on
interfaces and functions,

distributedness, characteristics of software which determine the degree to which
software functions are geographically or logically separated within the system,

reconfigurability, characteristics of software which provide for continuity of system
operation when one or more processors, storage units or communication links fails,
and

modularity, characteristics of software which provide well-structured, highly
cohesive, minimally coupled software.

Autonomy is likely to be very important in a safety-critical system, since some
percentage of safety critical software will interface with safety-critical hardware. If the
safety-critical hardware fails, either stops functioning or produces incorrect outputs, the
interfacing software, and possible the entire system may become corrupted or stop
operating17 . Depending on circumstances, safety features could fail.

Within the context of the software quality model, distributedness refers to the
architecture or design structure of distributed systems. It is relevant to safety concerns to
the extent it supports physical partitioning of SCCSCs and non-SCCSCs.

17My colleague, Guy Johnson, suggested the example of the Apple Macintosh mouse. Suppose the Mac
controls a software-based safety feature which is initiated by operator control. Somehow, the mouse
becomes disabled. The Mac is rendered inoperable and the safety feature cannot be invoked.

HII-25

Reconfigurability is essentially an issue of fault-tolerance. It is relevant to safety
concerns to the extent fault-tolerance is applied to safety-critical functions.

Modularity is a key software engineering design principle. In the context of safety-
critical software, it supports the notion of logical partitioning of safety and non-safety
critical software if physical partitioning is not feasible

In sum, autonomy and modularity are broadly related to software safety, compared to
distributedness and reconfigurability which are more narrowly related

8.1.3 USABILITY

The guidebook definition of USABILITY is undesirable, being defined as the effort
required to use the software relative to the effort required to implement the software. A
more preferable definition would be some measure of ease of learning and of use with
respect to the complexity or criticality of the functions provided. In the context of safety,
high usability software would be safety-critical software designed with human factor
considerations.

The defining criteria for USABILITY are:

operability, characteristics of software concerned with the usability of inputs and
outputs to the software, as well as procedures for operating the software, and

training, characteristics of software which provide transition from current operation
and provide initial familiarization. This guidebook definition is undesirable. A
more preferable definition would be characteristics of the software which indicate
the amount, type and duration of training required.

Both of these criteria are relevant to the operational aspects of safety-critical software.

8.1.4 CORRECTNESS

CORRECTNESS is narrowly defined to be the extent to which software design and
implementation conform to specifications and standards. The three criteria of correctness
deal exclusively with design and documentation formats and are content independent.

completeness, the indications that the required functions have been fully
implemented,

consistency, the extent to which uniform design and notation are used, and

raceability, the indications that requirements have been fully allocated across
several phases of the life cycle and across the corresponding several levels of
documentation (not the guidebook definition).

Since they provide measures of compliance, these criteria help provide assurance that

implemented safety-critical software meets all documented requirements.

S. 1.5 VERIFIABILITY

VERIFIABILITY deals with software design characteristics affecting the effort to
verify software operation and performance against requirements. Based on our analysis,

11-26

two new criteria have been added to VERIFIABILITY, analyzability and predictability. In
addition to the already defined criteria of sinplicity and modularity, the defining criteria of
verifiability are:

analyzability, characteristics of software which allow or facilitate rigorous analysis,

predictability, characteristics of software which provide assurance that execution
results conform to requirements,

visibility, reporting requirements that provide status monitoring of the software
development with respect to verifiability, as opposed to for example, cost and
schedule (definition adopted from guidebook),

self-descriptiveness, characteristics of software which provide an explanation of the
implementation of functions, and

According to the guidebook, visibility is concerned exclusively with the testing
program. Self-descriptiveness is not fully implemented by the guidebooks, since the
metrics for this criteria deal only with the establishment of code commenting standards.
The scope of this criteria should be expanded to include detailed design. Simplicity of
design and of implementation is good software engineering practice and is guidance
contained in the standards reviewed above.

All of the criteria contribute to the essential activities of V&V analysis and review for
safety critical software.

8.2 Metric Questions

This section contains candidate metric questions for the proposed factor SAFETY.
The questions were derived from the investigation's background materials considered
within the context of the Framework's existing quality factors and criteria.

The questions are mostly a synthesis of the concepts and requirements found in MEL-
STD-882B Notice 1 and MoD 00-55/1. There is no intention to suggest that the two
standards should be merged. Our aim in constructing the questions was to provide as
broad a sample as possible. Thus, with a few exceptions, we did not repeat questions
which are applicable to more than one development phase.

The questions are organized by criteria and then by the development level used by
Guidebook Volume 111 14]. In the Framework, questions are organized into worksheets
(WS) Each worksheet corresponds to a development level. The five levels are System
(WS 0), Software Requirements Analysis (WS 1), Preliminary Design (WS 2), Detailed
Design (WS 3) and Code and Unit Test (WS 4). Worksheets 3 and 4 are each further
divided into CSCI and Unit levels. Here, we did not distinguish between the CSCI and
Unit levels.

There are only a few questions included for Code and Unit Test (Worksheet 4). In
the case of software safety, the choice of implementation language will generate a large
number of language-specific questions. For this initial effort, this appeared to be too
specialized an area to include at this time. A good overview of the issues involved in
selecting an implementation language for safety-critical applications is found in [30]. For
an entire volume devoted to the use of Ada in safety-critical systems see [31].

I-27

METRIC QUESTIONS

ACCURACY (AC)

System Level (WS 0)

I. Have tolerances been established for safety-critical system inputs and outputs?

Software Requirements Analysis (WS 1)

1. Have tolerances been established for safety-critical software inputs and outputs?

ANALYZABILITY (AZ)

System Level (WS 0)

1. Is there a requirement that all specifications and designs be amenable to formal
analysis.

2. Is there a requirement that all software shall be free of architectures and language
constructs that would impede rigorous analysis of the software?

3. Have criteria been established for selecting the safety-critical software
implementation language?

Software Requirements Analysis (WS 1)

1. Is there a requirement to use a standard subset of the implementation language for
safety-critical software?

2. Is ther a requirement to avoid or minimize the use of floating point arithmetic?

3. Is there a requirement to avoid or minimize the use of interrupts?

4. Is there a requirement to avoid or minimize the use of recursion?

5. Is there a requirement to avoid or minimize the use of parallel asynchronous
processing?

6. Is there a requirement to avoid or minimize the use of multi-tasking?

7. Is there a requirement to avoid or minimize the use of object code patching?

8. Is there a requirement to avoid or minimize the use of dynamic program
reconfiguration?

9. Is there a requirement to avoid or minimize the use of dynamic memory allocation?

M-28

Preliminary Desig (WS 2)

1. Is the design amenable to formal proof or rigorous argument?

Detailed Design (WS 3)

1. (a). How many proof obligations?
(b). How many proof obligations have been discharged?
(c). Calculate b/a and enter score.

ANOMALY MANAGEMENT (AM)

System Level (WS 0)

1. Are there requirements for a safe survival and recovery from detected hazardous
conditions (i.e., fail-operational)?

2. Are there requirements for continued safe system operation in degraded modes of
operation (i.e, fail-soft)?

3. Are there requirements for the system to fail-safe?

4. Are there requirements for restarting the system from a fail-safe condition?

Software Requirements Analysis (WS 1) .

I. Is there a requirement to use a safety-monitor?

Preliminary Design (WS 2)

I. Does the design incorporate capabilities for fail-operational, fail-soft, and fail-safe
conditions?

AUTONOMY (AU)

System Level (WS 0)

I. Are there design requirements to isolate safety-critical software from faults or
failures in safety-critical hardware?

Software Requirements Analysis (WS 1)

1. Is there a requirement for multiple copies of safety-critical software to protect against
software corruption?

Preliminary Design (WS 2)

1. Does the design isolate safety-critical software from failures or faults in safety-
critical hardware?

111-29

COMPLETENESS (CP)

System Level (WS 0)

1. Is the statement of each safety requirement specific and unambiguous?

2. (a). How many safety requirements?
(b). How many safety requirements have been allocated to HWCI and CSCIs?
(C). Calculate b/a and enter score.

3. Have all interfaces between safety-critical hardware and safety-critical software been
identified?

4. Have requirements for appropriate system quality factors been specified for all
safety-critical functions?

Software Requirements Analysis (WS 1)

1. Have all safety requirements been allocated to CSCIs?.

2. Have requirements for appropriate quality factors been specified for all safety-critical
software functions?

Preliminary Design (WS 2)

1. Have all safety requirements been allocated to CSCIs and to CSCs?

2. Does the design incorporate all appropriate software quality factors?

Detailed Design (WS 3)

1. Have all safety requirements been allocated to the CSCI?

2. Does each allocated requirement meet the operational intent of the requirement?

Code and Unit Test (WS 4)

1. (a). How many units have been proved by formal arguments?
(b). How many units proved by formal arguments have one or more errors?
(c). if b/a = 0, enter 1; otherwise enter 0.

CONSISTENCY (CS)

System Level (WS 0)

1. Have criteria been established for formal design method selection?

Software Requirements Analysis (WS 1)

1. Is there a requirement to use a standard format for safety-critical software designs?

m-30

Preliminary Design (WS 2)

1. Are the design representations for safety-critical software in the format of the
established standard

Detailed Design (WS 3)

1. Are the design representations for safety-critical software in the format of the
established standard

Code and Unit Test (WS 4)

1. Have program constructs been reviewed to assure compliance with the subset
implementation language?

DOCUMENT ACCESSIBILITY (DI)

System Level (WS 0)

1. Is documentation available which describes the results of previous Software
Requirements Hazard Analyses which are applicable to the system?

2. Is documentation available which describes applicable safety standards and
regulations?

3. Does the documentation specify the system's capabilities when operating in a safe
state, a failed-soft state, and a failed-safe state?

4. Does the documentation contain comprehensive descriptions of all safety-critical

functions?

Software Requirements Analysis (WS 1)

1. Has an initial set of safety-critical software components been identified?

2. Have all inputs to the safety-critical software been identified and documented?

3. Have all safe, hazardous and unsafe outputs from safety-critical software been
identified and documented.

Preliminary Design (WS 2)

1. Does the documentation clearly show safety-critical software execution paths?

2. Does the documentation identify and state the purpose of the interface between each
safety-critical CSC and safety-critical hardware?

3. Is there a table showing safety-critical CSCs which execute when the system is in a
safe, failed-soft or failed-safe state?

111-31

Detiled Design (WS 3/3A)

1. Has documentation been developed for inclusion in the user's manual, operator's
manual and diagnostic manual?

2. Is each formally specified design accompanied by an English commentary?

3. Does the documentation identify and state the puipose of the interface between each
safety-critical CSU and safety-critical hardware?

3. Is there a table showing safety-critical CSUs which execute when the system is in a
safe, failed-soft or failed-safe state?

MODULARITY (MO)

System Level (WS 0)

1. Is there a requirement to isolate safety-critical functions from non safety-critical
functions

Software Requirements Analysis (WS 1)
1. Is there a requirement to isolate safety-critical software from non safety-critical

software?

2. Is there a requirement to isolate safety-critical data from non safety-critical data?

Preliminary Design (WS 2)

1. Has all safety-critical software been isolated from non safety-critical software?

2. Has all safety-critical data been isolated from non safety-critical data?

OPERABILITY (OP)

System Level (WS 0)

I. Are there requirements to alert the user/operator of safety-critical software error and
safety-critical equipment malfunctions?

2. Are there requirements to provide the user/operator with the capability to cancel a
process or event?

Software Requirements Analysis (WS 1)

1. Are there requirements to provide the user/operator unambiguous and complete
display of safety critical information

Preliminary Design (WS 2)

1. Does the design incorporate human factors considerations for safety-critical software
functions which interface with the user/operator?

HI-32

PREDICTABILITY (PR)

System Level (WS 0)

1. Is there a requirement that the behavior of the system be predictable at all times?

Software Requirements Analysis (WS 1)

1. Is there a requirement that the programming language manual be free from reference
to undefined (i.e., unpredictable) results?

2 Is there a requirement to use a validated compiler for safety critical software?

3. Is there a requirement to limit peak safety-critical utilization to 50%.

4. Is there a requirement for the use of defensive programming?

5. Are there requirements for meeting hard real-time constraints for safety-critical
software?

Preliminary Design (WS 2)

1. Does the design incorporate run-time assertions for safety-critical software?

2. (a). What is the total hardware resource allocated?
(b). What is the estimated hardware resource used by safety-critical software?
(c). Calculate b/a; enter 1 if b/a <= 50%, otherwise enter 0.

Detailed Design (WS 3/3A)

2. (a) How many CSUs.
(b) How many CSUs with defensive programming?
(c) Calculate b/a and enter score.

1. (a) How many units?
(b) How many units check data inputs from other software units?
(c) Calculate b/a and enter score

2. (a) How many units?
(b) How many units check data inputs from other hardware units?
(c) Calculate b/a and enter score

RECONFIGURABILITY (RE)

System Level (WS 0)

I. Is there a requirement for safety-critical features to be fault-tolerant?

Software Requirements Analysis (WS 1)

I. Are there requirements for safety-critical software to be fault-tolerant?

111-33

Preliminry Design (WS 2)

1. Does the design include redundant safety-critical software?

2. Does the design incorporate features for maintaining the integrity of all safety-critical
data values following the occurrence of anomalous conditions?

3. Does the design include redundant safety-critical data?

SELF-DESCRIPTIVENESS (SD)

System Level (WS 0)

1. Is there a requirement for each formal design to be accompanied with an English
annotation

SIMPLICITY (SI)

System Level (WS 0)

1. Is there a requirement to develop all safety-critical software in a way which facilitates
understanding of the design and program structure?

2. Is there a requirement to develop all safety-critical software according to structured

design techniques

Software Requirements Analysis (WS 1)

1. Is there a requirement to avoid or minimize the use of assembly language?

TRACEABILITY (TC)

System Level (WS 0)

1 Has a Safety Requirements Traceability Matrix (SRTM) been created?.

2. (a). How many safety requirements?
(b). How many safety requirements have been recorded in the SRTM ?
(c). Calculate b/a and enter score.

3 (a). How many safety requirements?
(b). How many safety requirements have test references recorded in the SRTM?
(c). Calculate b/a and enter score.

Software Requirements Analysis (WS 1)

1. Have all safety requirements allocated to software been recorded in the SRTM.

II-34

Preliminary Design (WS 2)

1 Has all safty-critical software been placed under configuration control?

Detailed Design (WS 3/3A)

1. Have all new SCCSCs been placed under configuration control?

TRAINING (TN)

System Level (WS 0)

1. Are there requirements to provide training materials describing the system's safety
features and safe operation?

2. Are there requirements to provide realistic simulation exercises of hazardous

conditions?

Software Requirements Analysis (WS 1)

1. Are there requirements to provide training materials describing the system's
software-controlled safety features?

VISIBILITY (VS)

System Level (WS 0)

1. (a). How many safety-critical requirements?
(b). How many safety requirements have preliminary qualification tests?
(c). Calculate b/a and enter score.

Software Requirements Analysis (WS 1)

2. Is there a requirement to design tests specifically for safety-critical software

Preliminary Design (WS 2)

1. Have test requirements been specified for safety-critical CSC integration and test?

Detailed Design (WS 3/3A)

1. Is there a test for each safety requirement?

Code and Unit Test (WS 4/4A)

1. Has every safety requirement been tested?

HI-35

9. REFERENCES

[1] Michael J. D. Brown, "Rationale for the Development of the UK Defence Standards
for Safety Critical Software," COMPASS '89 Proceedings of the 5th Annual
Conference on Computer Assurance, IEEE, 1990, pp. 144-150.

[2] Department of Defense, MIL-STD-1574A (USAF), System Safety Program for
Space and Missile Systems, 15:August 1979.

[3] Department of Defence, MIL-STD-882B Notice 1 System Safety Program
Requirements, 1 July 1987.

[41 Ministry of Defence, Interim Defence Standard 00-55/1, The Procurement of Safety
Critical Software in Defence Equipment, Part I. Requirements, 5 April 1991. The
standards are available from Ministry of Defence, Directorate of Standardization,
Kentigen House, 65 Brown Street, GLASGOW G2 8EX, ENGLAND.

[5] Ministry of Defence, Interim Defence Standard 00-55/1, The Procurement of Safety
Critical Software in Defence Equipment, Part II: Guidance, 5 April 1991.

(6] Ministry of Defence, Interim Defence Standard 00-56/1, Hazard Analysis and Safety
Classification of the Computer and Programmable Electronic System Elements of
Defence Equipment, 5 April 1991.

(7] Department of Defense, MIL-STD-SNS (Navy), Software Nuclear Safety.

[8] Michael L. Brown, "Software Systems Safety and Human Errors," Compass '88
Proceedings of the 3rd Annual Conference on Computer Assurance, IEEE, 1988,
pp. 19-28.

[9] M.A. Ould, "Software development under Def Stan 00-55: a guide," Information and
Software Technology, (32,3), April 1990, pp. 170-175.

[10] Nancy G. Leveson, "Software Safety: Why, What and How," Computing Surveys,
(18,2), June 1986, pp. 125-163.

[111 Nancy G. Leveson, "Safety as a Software Quality," IEEE Software, May 1989,
pp.88-89.

[121 Galen Gruman, "Software Safety Focus of New British Standard," IEEE Software,
May 1989, pp. 95-96.

[13] Department of Defense, DoD-STD-2167A, Defense System Software Development,
29 February, 1988.

[14] Thomas P. Bowen, Gary B. Wigle and Jay T. Tsai, "Specification of Software
Quality Attributes," RADC-TR-85-37, Final Technical Report, February, 1985.

[15] Nancy G. Leveson and Peter R. Harvey, "Analyzing Software Safety," IEEE
Transactions on Software Engineering, (SE-9, 5), September, 1983, pp. 569-579.

[16] Nancy G. Leveson and Janice L. Stolzy, "Safety Analysis Using Petri nets," IEEE
Transactions on Software Engineering, (SE-13, 3), March, 1987, pp. 386-397

HI-36

[17] Janet A. Gill, "Software Safety Analysis in Heterogeneous Multiprocessor Control
System," Proceedings Annual Reliability and Maintainability Symposium, Orlando,
IEEE, 1991, pp. 290-294.

[18] Department of Defense, U.S. Air Force Software Safety Handbook.

[19] Cliff B. Jones, Systematic Software Development Using VDM 2nd Edition, Prentice-
Hall, 1989.

[20] Antoni Diller, Z: An Introduction to Formal Methods, John Wiley, 1990.

[21] B.A. Carre, et. al., "SPADE - The Southhampton Program Analysis and
Development Environment," in I. Sommerville (ed.), Software Engineering
Environments, Peter Pereginus, 1986.

[22] Allen L. Ambler, et. al., "GYPSY: A Language for Specification and Implementation
of Verifiable Programs," in Software Specification Techniques, Addison-Wesley,
1986.

[231 B. P. Philips and S. G. Howe, "Verification - The Practical problems," in B. K.
Daniels (ed.), Achieving Safety and Reliability in Computer Systems, Elsevier
Applied Science, The Netherlands, 1987, pp. 89-99.

[24] B. A. Carre and T. J. Jennings, SPARK - The SPADE-Ada Kernel, University of
Southhampton, UK, 1988.

[25] David L. Parnas, A. John van Schouwen and Shu Po Kwan, "Evaluation of Safety-
Critical Software," Communications of the ACM, (33,6), June 1990, pp. 636-647.

[261 Bishop Brock and Warren A. Hunt, Jr.,"Report on the Formal Specification and
Partial Verification of the VIPER Microprocessor," Compass '91 Proceedings of the
Sixth Annual Conference on Computer Assurance, IEEE, 1991, pp. 91-98.

[27] R. A. Gove and Janene L. Heinzman, "Safety Criteria and Model for Mission Critical
Embedded Software Systems," Compass '91 Proceedings of the Sixth Annual
Conference on Computer Assurance, IEEE, 1991, pp. 69-73.

[28] Edward A. Addy, "A Case Study on Isolation of Safety-Critical Software," Compass
'91 Proceedings of the Sixth Annual Conference on Computer Assurance, IEEE,
1991, pp. 75-83.

[29] Department of Defense, Trusted Computer System evaluation Criteria, DoD-STD-
5200.28, 15 August 1983.

[30] W. J. Colleyer, S. J. Goodenough and B. A. Wichmann, "The Choice of Computer
Languages for use in Safety-Critical Systems", Software Engineering Journal,
March, 1991, pp. 51-58.

[311 I. C. Pyle, Developing Safety Systems: A Guide Using Ada, Prentice Hall
International, 1991.

Il-37

SECTION IV

OBJECT-ORIENTED TECHNOLOGY and SOFTWARE QUALITY

1. INTRODUCTION

Since 1976, RL has been funding the development of a software quality measurement
methodology. During this time and up to the present, this research program has been the
only sustained effort which has attempted to define a methodology to specify and evaluate
software quality at the product level. The current definition of the methodology is found in
a three volume set of guidebooks, Specification of Software Quality Attributes [7]. The
key underlying concept of the methodology is a three level hierarchical model of software
quality. The top level is a set of thirteen customer-oriented software quality factors. The
factor set is Efficiency, Integrity, Reliability, Survivability, Usability, Correctness,
Maintainability, Verifiability, Expandability, Flexibility, Interoperability, Portability, and
Reusability.

The second level is a larger set of defining attributes for the software quality factors.
These are termed software quality criteria and reflect technical considerations of good
software engineering and development practice. The third level is a still larger set of
software quality metrics which are measures of the software quality criteria. The software
quality metrics in turn are defined by lower level metric elements.

Rome Laboratory intends to periodically update the Software Quality Measurement
methodology in order to incorporate changes in software engineering technology. This
effort is an initial attempt to incorporate object-oriented technology into the methodology.

The 1980s witnessed rapidly increasing interest in object-oriented technology,
methods, and concepts. The object-oriented approach stands in contrast to traditional
methods based on functional decomposition. Advocates of this approach claim that by
concentrating on the objects comprising a system, rather than the functions it performs, one
arrives at clearer specifications, cleaner designs, and more maintainable implementations.

One problem, however, is that existing methods of assessing design and
implementation quality are inadequate for evaluating object-oriented artifacts. In particular,
existing metrics based on functional decomposition are not always appropriate (or even
meaningful) when applied to object-oriented software development, and even where
common terminology is involved, subtle distinctions often give rise to widely varying
assessments of quality. Unfortunately, the continuing rapid development of object-oriented
methods has resulted in scant attention being paid to the assessment of software quality. It
is the goal of this work to present some preliminary metrics that, based on current accepted
criteria for "good" design, will aid in the evaluation of future design. However, the
technology is still young, and this work must be viewed as an initial contribution only. As
the field matures, the proposed metrics should be reviewed and modified, replaced, or
enhanced as necessary in light of advances in research and application.

Of course, the proposed metrics cannot be comprehended or applied in a vacuum.
Thus, another goal of this work is to provide the necessary background in the state of the
art in object-oriented development as a prelude to the discussion of object-oriented quality
concepts and methods. To meet these objectives, the remainder of this paper is organized
as follows:

IV-1

* Section 2 provides background information related to historical
development of object-oriented technology, as well as the key concepts
underlying the application of this technology to software development.
Included is a brief discussion of the benefits that proponents claim accrue
to the use of this technology.

* Section 3 expands the previous discussion by considering the specific
application of object-oriented technology to software design. This
includes a discussion of design issues and emerging design disciplines as
these relate to software quality. Much of this work is subjective in nature,
and not directly transferable into metrics. However, these subjective
criteria are the basis for our proposed metrics.

" Section 4 presents the proposed quality metrics for object-oriented design
and implementation within the framework described in [7].

2. KEY CONCEPTS

Any quality evaluation system requires an understanding of the key concepts and
assumptions underlying the development methods employed. This section addresses this
issue in the context of object-oriented development The first subsection provides a
historical perspective on the development of the object-oriented paradigm. The remaining
subsections provide a short introduction to key concepts of object-oriented technology. Of
course, this brief introduction is insufficient for a deep appreciation of the issues involved;
references [6, 31, 54] have excellent extended discussions of the technology.

2.1 Historical Development

Most proponents of object-oriented technology trace the development of this
technology back to the introduction of Simula 67 [12]. Simula 67 introduced many of the
constructs considered essential to object-oriented programming:

" Objects comprising state (variables) and operations (procedures to access and

modify the state).

* Classes categorizing the distinct types of objects in the system.

* Inheritance relating groups of classes by generalization/specialization relationships.

" Polymorphism allowing objects to be used in any context where an object of a
ancestor class is required.

* Dynamic binding permitting specialized classes to extend the operations defined in
their ancestor classes.

Although originally developed for simulation (hence its name), Simula 67 quickly
attracted a loyal (if small) group of admirers who saw the object classification paradigm as
a powerful mechanism for the organization of large software systems. The work of the
Simula 67 group, as well as that of Hoare on data types [191 and the development of

IV-2

languages such as Pascal [55] led to two divergent lines of research in the 1970s: abstract
data types (ADTs), and object-oriented programming.

Work on abstract data types was most visible, resulting in a succession of languages
emphasizing data abstraction: Euclid [25], CLU [28], Modula-2 [56], and Ada [48]. For
the most part, the design and development philosophy underlying these languages was that,
while ADTs extended the types of entities which a software system could manipulate, these
were passive elements identified and designed fairly late in the software development cycle.
The primary use of ADTs was to enhance, rather than replace, conventional functional
decomposition. In particular, data type design was usually of secondary importance to
functional design.

A few groups, however, continued to view objects as the primary concepts behind
software construction. The most influential group was that at Xerox PARC, where a
succession of Smalltalk languages was developed. Much of this work was underpublicized
until the start of the 1980s with the announcement and release of Smalltalk 80 [16]. In
parallel with this, researchers elsewhere were reviving interest in object-oriented
technology by extending conventional languages with support for classes and inheritance.
The most popular extension languages were C [21] and LISP [44]. The former was the
base for the development of both C++ [47] and Objective-C [11], while the latter resulted
first in the Flavors package (32], and most recently in the Common Lisp Object System
(CLOS) [3].

The increased interest in object-oriented programming led to the development of new
languages such as Eiffel [30], that attempt to combine the pure object-oriented approach of
Smalltalk 80 with facilities to support high quality, software development. In addition,
others have attempted to extract the essence of the object-oriented paradigm and use this to
synthesize complementary methods for analysis and design [6, 10, 39,54]. The current
state-of-the-art is that a variety of languages exist to support object-oriented development,
and disciplines are emerging to support such development in up-front tasks such as
analysis and design.

2.2 Objects and Classes

The three most important concepts underpinning object-oriented development are
objects, classes, and inheritance. The goal of this subsection is to define these terms and
briefly show how they serve in toto to define the object-oriented paradigm.

2.2.1 What is an Object?

As might be expected, the notion of what constitutes an object is at the core of any
method, technology, or language that claims to be object-oriented. While practitioners and
theoreticians disagree as to details, in general an object is viewed as a self-maintaining and
self-monitoring entity of interest in the problem domain. Along one dimension of
organization, an object may be a software model of a concrete entity: a person, aircraft, or
sensor, or it may represent an abstract concept, such as an airline flight, a passenger list, or
a graphical window. Orthogonal to this dimension are the notions of objects representing
self-contained, indivisible entities, such as persons or sensors, and those objects
representing collections of other objects (e.g., arrays, lists, stacks, and queues).

Various writers have attempted to describe the essence of an object. For instance,
Wegner [501 writes "An object is a set of 'operations' and a 'state' that remembers the

IV-3

effects of these operations.". Booch, in his recent text on object-oriented design [6], states
that "An object has state, behavior, and identity." The common ground here is on an object
as an encapsulation of useful state information, and one can view the operators of Wegner
as defining the behavior emphasized by Booch.

Simply put, each object is in control of its own destiny. This anthropomorphism is
actually a key to understanding the object-oriented viewpoint. Another indicator of this
viewpoint is the use of message in Smalltalk [16] to denote the request for an operation on
an object (whether this is to interrogate the object's state or to alter its state). While some
have objected to this term as implying a (non-existent) parallelism in Smalltalk (by analogy
to message passing in operating systems), the terms does connote that objects receive
messages as requests to perform some action. This in turn reinforces the identity and
inviolability of each object's internal state. As Ingalls has so succinctly phrased it:

Instead of a bit-grinding processor raping and plundering data structures, we
have a universe of well-behaved objects that courteously ask each other to
carry out their various desires [20].

Of course, one must ascribe positive attributes to this viewpoint in order to convince
others of its viability and merit. One immediate consequence of the object-oriented
viewpoint is that it enhances the properties of abstraction and information-hiding. The
former is enforced by the encapsulation of all state information within an object, and thus
forbidding direct manipulation by other unrelated objects. That is, the behavior of an object
is fully specified by the operations forming its public interface. Similarly, information
hiding is also enforced by encapsulation. Other objects have no way of knowing what they
do not need to know, just exactly how an object implements the services it provides. This
permits the replacement of one object by another whose behavior is identical, but whose
internal dam structures and algorithms may be radically different. This makes it feasible to
define behavior more formally, via a state invariant that the object must ensure, as well as
pre- and post-conditions defining the effects of each operation.

Objects, then, represent an alternative structuring mechanism to those based on
functional decomposition. By consolidating the operations and state information of a
model entity in an object, one can attain many of the attributes indicative of well-engineered
software; i.e.,.abstraction, encapsulation, and information hiding. However, the existence
of objects leaves open the question as to how an object's state and behavior are defined.
Providing these definitions is the role of the two other primary object-oriented concepts:
classes and inheritance.

2.2.2 What is a Class?

It is rare indeed that the individual entities in a software system are entirely unrelated
in form or function. Indeed, one of the key issues in software design is the identification
of appropriate abstractions that generalize particular behavior. Traditionally, these
abstractions have been functional in nature. There may be several routines, for instance,
that provide the sorting abstraction in a variety of algorithms. With object-oriented
technology, one abstracts whole entities that in turn define the system model.

In general, there will be many objects that, in the model at least, exhibit common
behavior. For example, all queues exhibit FIFO behavior, whether queues contain
operating system I/O requests, customers at a bank, or mouse events in a window
manager. Similarly, all employees being modeled for a payroll system exhibit similar

IV-4

behavior, and maintain similar state information. Of course, each individual will have, in
general, a distinct state, but the behavior with respect to that state is common.

The traditional way to define common behavior is via a type, and in the case of
designer or programmer created types, an abstract data type (ADT). In object oriented
methods, this notion is subsumed under the notion of a class. While classes in most
object-oriented languages are subtly different from types (see section 2.3.1), for the present
we will consider the concepts' similarities. An ADT defines the behavior of a particular
variable type, whereas a class defines the behavior of a group of related objects. What
matters here is the difference in perspective. Objects are modeled as self-contained, entities
in charge of their own destinies, whereas variables of an ADT are traditionally viewed as
being subservient to the functional processes in which they (the ADTs) are embedded.

While details vary, typically class definitions contain declarations for the variables
defining the state of the objects in the class instance variables, as well as the signatures and
implementations for the object operations forming the interface. In Smalltalk terminology,
the signature defines the message protocol and the message name along with the number of
arguments, and possibly their types. The implementation defines the method that provides
the operation. Of course, at the specification and design stages, the code is replaced by a
more or less formal description of the operation's effect. (In this regard, Eiffel [301 is
notable for its inclusion in the language of a simple assertion mechanism to define
preconditions and postconditions for each operation, as well as a state invariant that each
object in the class must maintain.)

The mechanism for creating objects and associating them with identifiers varies
widely. In Smalltalk, each class defines a new method to create properly initialized objects
in the class. Indeed, as classes themselves are objects in Smalltalk, the result is a clean,
self-referential system, at the cost, however, of maintaining type information during
execution.

In Eiffel and C++, classes as such do not exist at runtime. Instead, special
procedures are provided to create and initialize new objects. Conceptually, these are part of
the object's behavior (as opposed to the Smalltalk approach of factoring these out into
separate Class objects). As Eiffel and C++ are statically typed, there is no ambiguity as to
the class of each object being created at any given instant, so the class protocol of Smalltalk
(with its associated overhead and runtime type checking) is eliminated. As a general rule,
embedded production level software developed using object-oriented techniques will be
implemented in languages such as Eiffel and C++, both for the efficiency and higher
reliability associated with static typing. We will continue to discuss Smalltalk, however, in
that it is often the purest expression of some concepts that are necessarily constrained in
statically typed languages.

In summary, a class serves to defined the (encapsulated) state of a related group of
objects, and to specify the externally observed behavior via the operation interfaces. The
next step is to handle the controlled evolution and specialization of systems in this context.
The primary object-oriented concept addressing these needs is inheritance.

2.3 Inheritance

Classes by themselves are useful. Classes coupled with inheritance, however,
provide a powerful mechanism for exploiting similarity of behavior, by creating a hierarchy
of behavior based on these similarities. Note that classes by themselves have a rigid

IV-5

definition of similarity: two objects are similar if their behavior in the same state is
identical, and they represent this state in the same manner. Inheritance supports
incremental evolution based solely on behavioral similarity.

When a new class is created, it will typically reference a class from which it inherits
both state and behavior. For example, classes defining polygons and ellipses might inherit
from the class of closed figures, and the class of parallelogram objects could inherit from
polygon (see Figure 1).

CLOSED
FIGURE

EUPSEPOLYGON

PARALLEL-
OGRAM

Figure 1: Simple Inheritance Structure

In such a case, class CLOSED FIGURE would be called the superclass of
POLYGON and ELLIPSE, and, by symmetry, the latter two classes would be called
subclasses of CLOSED FIGURE. This superclass/subclass organization defines a class
hierarchy, and we (recursively) define the ancestors of a class C to be the superclass of C
and the ancestors of C's superclass. In a similar manner, we can (recursively) define a
class's descendants or heirs in terms of the class's subclasses.

Typically, a subclass has access to internal details of its superclass that are not part of
the interface presented to most clients. In particular, the subclass can often directly
manipulate the superclass instance variables and override the superclass methods. This
latter property is especially powerful, as it means that a subclass can take advantage of
special properties to optimize or specialize the behavior specified by the superclass. For
example, rotating an arbitrary closed figure about its center is quite complex, whereas
rotating an ellipse is simple by comparison. Thus the ELLIPSE class in Figure 1 might
override the general method with a more efficient one based on the properties of ellipses.
Indeed, were we to create a subclass CIRCLE of ELLIPSE, we could again override the
method again with the simplest one possible, a method that does nothing!

Another use of inheritance is to extend the behavior of the superclass. For example,
we might query a polygon object as to its number of sides, whereas this is meaningless for
ellipses, as well as for the more general class of all closed figures. Thus, we might add a
method in POLYGON to return the number of sides. In cases where we know we have a
POLYGON we can send the associated message. However, POLYGONs, ELLIPSEs, and
all of their subclasses are also CLOSED FIGUREs, so we can be confident that they will
all respond appropriately to a common message to compute their area (even if the methods
to perform the computation vary from class to class).

IV-6

Some object-oriented languages have a special designated class that is the common
ancestor of all other classes: in Smalltalk this is class Object, and in Eiffel this class is
named ANY. Other languages, especially hybrids such as C++, do not define any fixed
common ancestor class. In those languages that support this concept, messages available
in all classes (such as a generic print message) will be implemented in this top-level class.

The issues involved in the use of inheritance are both important and subtle. The
following subsections discuss various aspects of the use of inheritance in design and
implementation.

2.3.1 Inheritance and Data Typing

It is easy but misleading to equate classes and subclasses with types and subtypes.
While inheritance can be used to create a compatible type hierarchy, this is not a necessity.
Indeed, some languages such as POOL [2] make clear linguistic distinctions between these
two concepts. This subsection will discuss those cases where inheritance is used for
subtyping, whereas the next subsection will concentrate on inheritance for code reuse.

When inheritance is used for typing, then we are using the class hierarchy to represent
an "is-a" relation among classes. Referring again to Figure 1, we see that this relation is
obeyed: a PARALLELOGRAM is a POLYGON, a POLYGON is a CLOSED FIGURE,
etc. The key principle here is substitutability: can an object be used in any context where an
object from one of its ancestor classes is required? If so, we have behavioral compatibility
and by extension a proper type hierarchy.

Given a class hierarchy that is also a type hierarchy, there are two ways in which a
class C may be related to its superclass. The first is by type extension:. Objects of class C
extend the behavior of the superclass by adding additional methods, while maintaining
compatibility with the methods defined in the superclass. Adding a method to compute the
number of sides to the POLYGON class is an example of extension.

The second relationship is that of concrete implementation to abstract specification.
Consider Figure 2, which shows three classes supporting a last-in first-out stack.

ABSTRA CT

STACK

FIXED VARIABLE

STACK STACK

Figure 2: Abstract and Concrete Classes

At the top of the hierarchy is class ABSTRACT STACK, which defines the protocol
common to all stacks (i.e., defines the appropriate messages and their arguments).
However, this class may well not provide full implementations of the associated methods,
leaving this chore to its subclasses. Such classes--defining behavior but omitting concrete
implementations for one or more methods--are normally called abstract classes (or, in
Eiffel, deferred classes).

IV-7

Abstract classes are similar to package specifications in Ada, but they have one
important difference. Some of the methods may be fully defined in terms of messages that
must be implemented in subclasses. For example, ABSTRACT STACK may specify two
messages, one to determine the "size"' of the stack, and the other to determine whether or
not the stack is "empty". Obviously, the "empty" method can be written in terms of
"size", even though the method for determining the stack size is unimplemented.

Continuing with the example, one can envisage the development of two concrete
implementations of stacks: FIXED STACK using arrays, and VARIABLE STACKs built
with linked lists. Both of these have ABSTRACT STACK as the superclass, and both
exactly implement the defined behavior. Thus, objects from either concrete class can be
used wherever a stack per se is required, without requiring any special knowledge on the
part of the stack user. Note as well that neither concrete implementation is required to
implement the "empty" method, though this is possible if desired.

2.3.2 Inheritance and Code Reuse

A second and more controversial use of inheritance is for code reuse. Often a c,
will define useful behavior that is similar (but not identical) to that desired. For instance, a
queue is very similar to a general list except for the rules governing adding and removing
elements. If the existing LIST class also provides useful messages that traverse the list as a
whole, it is tempting to have the new class QUEUE be an heir of LIST, overriding the
insert and delete methods with ones appropriate to a queue. In this way, the QUEUE class
can directly reuse a great deal of useful code from LIST. Unfortunately, the principle of
substitution is violated, as queues cannot in general be substituted wherever a list is
required.

Some other more recent languages, notably POOL [2], have separated the notion of
type and class. In this way, inheritance is used to capitalize on reuse possibilities, while
behavioral specifications define the type hierarchy. That is, classes and inheritance define
the behavior objects possess, while types and subtypes define the behavior variables and
parameters required. Assignment is only permitted when these behaviors match. In
general, a class is not type-compatible with its superclass, though of course such
compatibility is still possible.

Another approach is found in the most recent versions of C++. If class C lists class B
as a superclass, then objects of class C can be substituted wherever an object of class B is
required; that is, normally the class and type hierarchies are the same. However, if C lists
B as a private superclass, then objects of class C have access to the state and methods of
B (as would any subclass of B), but objects of class C are not substitutable for B's.

2.3.3 Multiple Inheritance

The inheritance hierarchy described so far is tree-structured, every class having at
most one superclass. However, there are instances where the class being described has an
"is-a" relation with several existing classes. Consider the extension to the class of figures
shown in Figure 3.

IV-8

CLOSED

FIGURE

ELIPSE POLYGON

PARALLEL-
OGRAM

Figure 3: Example of Multiple Inheritance

New classes RECTANGLE and RHOMBUS are subclasses of PARALLELOGRAM,
and class SQUARE has been made a subclass of both RECTANGLE and RHOMBUS.
In a mathematical sense, this is appropriate, as squares have exactly the properties of both
rhombuses and rectangles.

There are subtle and difficult problems with multiple inheritance. The first is method
selection. If a class such as SQUARE does not implement a given method, where should
the method be located: in RECTANGLE, in RHOMBUS, or in both? Also, all SQUARES
are descendants of PARALLELOGRAM along two different paths. Should the instance
variables for PARALLELOGRAM be duplicated, or should there be only a single copy?

Different languages handle these problems in a variety of ways. Suffice it to say that
multiple inheritance is still an area of active research, and no generally acceptable solution
to the problems it creates has been proposed. Indeed, some in the field believe that multiple
inheritance is a red herring, and that any problem for which multiple inheritance is
proposed can be solved as easily using only single inheritance. Given the widely different
semantics attributed to this concept, it is a good heuristic to avoid the use of multiple
inheritance whenever possible.

2.3.4 Clients vs. Heirs

Inheritance gives rise to two distinct ways in which different classes may be related.
The first is a client/server relation, where objects in the first class have instance variables
containing objects in the second class. The second relation is inheritance, where objects in
the first class, being descendants of the second class, have access to state information not
visible to normal clients. The obvious question is how to choose between these two.

IV-9

The standard answer is to ask whether the "is-a" relation holds. If so, inheritance is
indicated. Otherwise, the relationship is one of "has-a" or "contains," in which a
client/server relation is more appropriate. In addition, if both of these appear appropriate,
most designers and programmers would choose the client/server relation, as this results in
the least coupling between the classes. As in traditional functional decomposition, lower
coupling is usually an indicator of an artifact that is easier to maintain, test, and modify.

2.4 An Alternative: Prototypes and Delegation

The primacy of classes and inheritance as the structuring mechanism for objects is not
universally agreed to by workers in the field. Languages such as Actor [1] and Self [49]
do not have classes, nor do they support inheritance. Instead, these languages have a
single entity, the object, as the basis for all internal structure. However, both Self and
Actor embody concepts that mirror the effects of classes and inheritance, namely prototypes
and delegation.

Prototyping is associated with new object creation. Instead of creating an object by
mentioning the class to which it belongs, the object is created by cloning (copying) an
existing object. In the process of making the copy, new instance variables and methods
can also be defined, so the activity may resemble both object and subclass creation.

Inheritance is achieved by delegation. An object can specify that any message which
it does not understand directly is to be passed to a parent object for processing. The
similarity to subclassing and dynamic binding is obvious, and delegation can be used to
simulate the inheritance mechanism found in most object-oriented languages.

While this approach is interesting, and is particularly attractive in rapid prototyping
situations, it is not in the mainstream of object-oriented techniques, nor is it found in
languages or methodologies whose focus is high reliability embedded systems. Thus, for
the remainder of this paper, we will concentrate on the use of classes and inheritance to
describe the behavior of similar objects.

2.5 Other Issues

In addition to the basic concepts of object, 7lass, and inheritance, other issues are
pertinent to the development of object-oriented software. This section briefly reviews a
few of these issues.

2.5.1 Polymorphism

The term polymorphism, meaning "multiple structure" was coined by Strachey [46] to
describe functions that operate on arguments of different types. Strachey was particularly
interested in parametric polymorphism, where the function was defined uniformly for a
given set of types, each of which was required to exhibit a given form of behavior. In this
respect, parametric polymorphism is similar to the use of generic type parameters in Ada
programs.

However, inheritance provides examples of another form of polymorphism based on
the substitution principle. That is, if we assume the inheritance structure implements a type
hierarchy, then we can substitute subclass objects wherever a member of the superclass is
required. In particular, in strongly typed languages, this permits us to assign an object to a

IV-lO

variable whose type is that of the object or any of its ancestor classes. Of course, by
assigning to a variable of an ancestor class type, any extended behavior of the objects
"true" class is hidden. We implicitly used this previously when discussing the substitution
of ELLIPSE objects for a CLOSED FIGURE was required.

Thus, it is possible to have strong typing in place, and yet permit a variable to be
associated with objects of many different types (any subclass of the variable's nominal
class). Languages like Eiffel make extensive use of inheritance polymorphism to provide
flexibility in the face of static type checking.

2.5.2 Dynamic Binding

A related concept is that of dynamic binding, which most frequently comes into play
when refining abstract classes. Recall that the abstract class A simply defines the behavior
expected when a given message is received, but need not provide an effective method to
handle the message. Thus, if we have an object of class A in hand, any such message will
be handled differently in different concrete subclasses.

Refer once again to the stack example in Figure 2. If we send a "pop" method to an
ABSTRACT STACK object, the actual method will depend on whether the stack is actually
a FIXED STACK or a VARIABLE STACK. In the former case, we would expect an array
index to be decremented, whereas in the latter case a linked list node would probably be
freed. The key observation is that either approach correctly implements a stack behavior,
so objects from either concrete subclass may be freely used wherever an ABSTRACT
STACK is required. The method appropriate to the specific object at hand will be selected
dynamically.

It should be noted that dynamic binding is not restricted to implementing abstract
messages only. It is also possible to override a fully-implemented method in a superclass if
the attributes of a subclass permit optimization. Refer to Figure 3 again, and consider a
message defined in CLOSED FIGURE to compute the internal area. At the level of
CLOSED FIGURE this message would be specified but not implemented. Within
POLYGON we might find a general method applicable to all polygons. However, this
general method can be optimized in the case of RECTANGLEs, and even further simplified
for objects in class SQUARE. An object in any descendant class of CLOSED FIGURE
will handle the "area" message in a manner most appropriate to the object. This will occur
even when the type of the variable associated with the object is only guaranteed to be
CLOSED FIGURE.

Dynamic binding is primarily an implementation concept, as during design the
concern is with observable behavior and not the specific algorithm that provides the
behavior. However, dynamic binding is a key ingredient in supporting code reuse and
software evolution, as it supports the incremental adaptation of a system to new demands
without rewriting significant pieces of code.

2.5.3 Object-Oriented vs. Object-Based Languages

The previous discussion has stressed the use of inheritance, especially as a tool for
behavioral extension, as well as a mechanism for providing concrete implementations of
abstract classes. However, many common languages do not support inheritance, or
support it in a very restricted sense, yet do have constructs analogous to class and object.
Chief among these is Ada, where packages and private types can be used to define classes

IV-1I

and create objects. However, the lack of inheritance in the current version of Ada leads
most workers to classify it as object-based rather than object-oriented [50].

This is not simply semantic quibbling. Many of the object-oriented design approaches
emphasize the need to identify a hierarchy of classes as part of the overall design. Clearly,
implementing such a design in a language like Ada imposes serious problems, as there are
no mechanisms to mirror the class hierarchy in the design. In such cases, the benefits of
object-oriented design can only be partially realizea, though even so, the notions of class
and object, coupled with the shift in viewpoint, are valuable in themselves.

3. OBJECT-ORIENTED DESIGN

This section discusses object-oriented design in the context of the general concepts
described previously. First, we concentrate on issues that, while not unique to the object-
oriented approach, are of particular relevance. In general, this is due to facets of the object-
oriented approach that highlight specific issues, or because of claims for the superiority of
object-oriented approaches with regard to the issue at hand. This is followed by a
discussion of approaches to object-oriented design that seek to address these issues and
capitalize on the advantages of the metaphor.

3.1 Issues

3.1.1 Formal and Rigorous Development

An important issue is the means of specifying the behavior and defining the properties
of objects in a class (or class hierarchy). One possibility is to use an informal description
patterned after the process specifications (PSPECS) associated with structured analysis and
design. However, many workers in the field believe there is much to be gained from using
formal description notations such as Z [13, 43], , Obj [15], or Larch [17] to define the
invariant state and applicable operations (methods) in a mathematically precise way.
Indeed, there is even work on extending Z to Object-Z [141 in order to make the connection
between specification and design even more explicit.

Another approach is to embed support for mathematical specification directly in a
programming language. In this way, much of the design information is captured in the
program text itself, thus minimizing the burden of keeping design documentation and
related implementation consistent. Among the first languages to provide such support was
Eiffel [301, where specific language clauses support the definition of class invariants
(internal state consistency conditions), as well as method pre- and post-conditions. In
Avalon/C++ [52], the use of Larch is complemented by the definition of a specific Larch
interface language for C++. This in turn is used in the design and specification of objects
in C++. Finally, the work done on A++ [9], combines the algebraic style of Larch and the
model orientation of Eiffel to describe and reason about the properties of C++ classes.

What makes this work so interesting is that objects (or, more precisely, c -sses of
objects) appear to provide a natural cluster for rigorous specifications of behavior. While it
is still rare to see object-oriented designs presented using formal notations, the effects of
organizing a model using the entities in the system appears to make such specifications
easier. Hence, one candidate indicator of a high-quality design in an object-oriented
technology would be the presence of a rigorous mathematical specification of each class's
functional characteristics. In the long run, it may turn out that object-oriented technology
will have facilitated the development and use of formal software engineering methods.

IV- 12

3.1.2 Encapsulation and Information Hiding

Flawed designs are undesirable, even if formally and precisely specified. This
observation leads to consideration of other factors in the evaluation of design quality.
Among the factors most often cited with respect to the object-oriented approach are
encapsulation and information hiding, whose influence can be traced to the classic paper by
Parnas [35].

Information hiding is the principle that each module in a system should maintain an
implementation secret, such as the format of a data structure or the commands used to
manipulate an I/O device. The remainder of the program can access and manipulate the
information held in a module only via a small set of interface procedures and functions.
Thus, the module's secret is encapsulated as part of the internal state, and is not directly
manipulable by other portions of the system. In effect, these principles lead to software
construction based on well-defined modules that are internally cohesive, yet which are
loosely coupled to achieve the overall system objectives.

If one identifies the generic term module with the object-oriented notion of a class,
and interface procedures and functions with messages and methods, the analogy is quite
clear. Secrets are contained in each object's instance variables, which store the state
information required to interpret and respond to each message. These variables are only
manipulable in accordance with the specification of the object's behavior. However, the
existence of multiple objects per class extends the basic concept of information hiding, in
that there may be many instances of a class, each exhibiting similar behavior. For example,
in a distributed system there might be many communications channels, each abiding by a
common protocol. The secrets maintained for each channel (specific hardware interface to
use, packet length restrictions, etc.) can be factored into a generic class definition. Channel
creation reduces to creation of a new object in this class, which from that point on
maintains the secrets for this specific channel. Overall behavior is thus separated from
implementation details.

There are potential pitfalls, however, especially when inheritance comes into play. In
most object-oriented systems, each class has unrestricted access to instance variables in its
ancestor classes. This has proven to be both an asset and a liability. Direct access can
improve efficiency, but makes it more difficult to verify correct overall system behavior.
The problems inherent in even controlled breaking of encapsulation have led many to
discourage the use of direct access in the name of correctness, reusability, and resilience to
change [41]. Indeed, such restrictions are a key aspect of the Law of Demeter [27], which
was developed as a heuristic for assessing design quality. In simplest terms, this "law"
forbids the direct access by methods in a class to any state information in another class,
even an ancestor. Following this law, in general, leads to high internal cohesion and low
coupling, even in the face of inheritance.

3.1.3 Class Organization

A third important issue in object-oriented design is class organization. This naturally
divides into three subproblems, class identification, class hierarchy design, and class
client/supplier relationships.

The most important, and most difficult, issue in object-oriented design is the proper
identification of the classes in a system. This process may be aided by parallel efforts to

IV- 13

identify, specify, and catalog reusable generic classes for a particular domain (see Section
3.1.4). In addition, traditional concepts of information hiding, encapsulation, and module
cohesion also provide important heuristics for evaluating the appropriateness of candidate
classes. Still, the major emphasis in this area continues to be the principles for identifying
candidate classes, and for selecting those which are useful in solving the problem at hand.

Once the basic classes have been identified, the next problem to be solved is that of
creating the proper inheritance hierarchy. Here we implicitly assume a language with
inheritance is being used for implementation. If this is not the case, then a flat class
structure is almost certainly the most appropriate, as the process of simulating inheritance in
a language that does not provide this feature tends towards unmanageably complex
implementations.

A well-developed class hierarchy will typically contain abstract classes near the root
and concrete classes at the leaves. Of course, there is a continuum from abstract to
concrete, and interior classes in the hierarchy serve to both extend and implement methods
which are simply specified at higher levels.

Finally, the client/provider relationships must be specified (this is similar to a structure
chart in structured design or the uses relation described by Parnas [35]). In the case of
object-oriented design, the connections are most frequently between classes. For instance,
in the CLOSED FIGURE hierarchy shown in Figure 3, it is common to associate a position
with each figure, and the natural class of such positions is a POINT. In this case,
CLOSED FIGURE is a client of POINT, in that every such CLOSED FIGURE object will
have a POINT object instance variable to hold the figure's position.

Note that the client/provider relationship is more resilient to change than that of
subclass/superclass. The reason for this is that clients can only depend on the externally
specified interface of the provider class, and are thus immune to changes in the internal
structure or algorithms of the provider. This is manifestly not the case with subclasses,
unless a strict adherence to encapsulation is maintained.

3.1.4 Abstraction and Reusable Classes

The final design issue we will address is that of abstraction and reusability. One of
the promises held out by proponents of the object-oriented approach is that of increased
reusability. However, this is only a potential benefit, and while the object-oriented
approach may make identification of such components easier, it is all to easy to
compromise reusability under the pressure of delivery deadlines. Currently there are
efforts underway in many corporations to identify, specify, and catalog classes of objects
of importance to the organization as a whole. This is the role of object-oriented domain
analysis (OODA), and as such is beyond the scope of this work.

However, it is often true that reusable classes evolve in a bottom-up fashion, when
groups working on a series of related projects begin to notice commonalities among the
classes being developed. In its best form, this results in a process known as refactoring,
where common state or methods are promoted to an abstract superclass, and the specific
classes are then reimplemented in light of these commonalities. Work in this area is quite
new, and support for semi-automated refactoring is a basic research problem [34]. Still,
the ability to easily refactor and reconfigure class hierarchies is important for the support of
both reusability and system evolution.

IV-14

3.2 Design Approaches

The previous section presented some of the issues involved in the successful
application of object-oriented design. This section discusses approaches to the use of this
technology that have been proposed to deal with these issues.

3.2.1 Software Construction as Contracting

One of the most eloquent and intuitively appealing metaphors for object-oriented
design is that of software contracts. As described by Betrand Meyer [30], contracts are
binding obligations between objects (or, most commonly, between objects in two classes).
The contract specifies both what preconditions must be met by the client object (such as
permissible parameter values, etc.), and what service will be delivered by the provider
object when the preconditions are met (usually given as a postcondition for a
message/method). In addition, the provider object may be constrained by a class invariant
that defines relations between internal state information (instance variables) necessary to
guarantee correct service. An example invariant would be that the top of stack index for an
array-based stack class must be between zero and the largest legal array index.

The contracting metaphor meshes well with the mathematically based concepts of
formal specification, as well as the more informal concepts of information hiding and
encapsulation. The contract defines exactly the obligations of each party, as well as the
expected result when these obligations are met. Meyer pushes this idea even further: if
either party to a contract fails to meet the obligations, then the other party is under no
constraint. In particular, as discussed by Meyer, this means that failure of the client object
to meet a precondition results in unpredictable behavior by the provider object.

The clear benefit of this approach is a reduction in the amount of error checking code
within each method, as it is the client's responsibility to ensure the preconditions are met.
On the other hand, this does lead inevitably to the need for rigorous inspection to ensure
that all contractual obligations are met. Indeed, the exception mechanism of Eiffel is
specifically designed to handle only failures to meet contractual obligations. The viewpoint
here is that exceptions represent a significant deviation from specified behavior, and they
serve simply to allow the software to place the overall system in a safe, consistent state.

The contracting concept is clearly attractive. It is clean, intuitive, and formalizable.
Indeed, this notion will appear in other guises as we turn to the (few) extant methods
proposed for designing object-oriented software.

3.2.2 Design Methods

While several methods for object-oriented design have been proposed, two
approaches have been most influential:

* The research performed at Tektronix [54], and

" The work of Grady Booch at Rational [6].

This section will briefly discuss both of these efforts.

IV- 15

The work at Tektronix has produced a method called responsibility-driven design.
One of the appeals of this technique is that the supporting technology is deceptively simple,
requiring only cardboard index cards. These cards are used to record class names,
responsibilities, and collaborators. Thus the name CRC cards. The goal is to take a
specification, either formal or informal, and derive the appropriate classes in the system.
As a first approximation, the nouns found in the specification are used as a first set of
candidate classes. After weeding out duplicate and synonymous terms, the names of the
classes are written at the top of individual index cards.

The next step is the identification of responsibilities, the information or state for which
each class is responsible. At this point, a class may be split if the responsibilities are too
many or too diffuse. Similarly, a class which has no responsibilities will be eliminated at
this step (actually, put to one side, as later refinements may point up responsibilities not
evident at this stage). At the end of this stage, each index card has been filled in with a set
of responsibilities (typically 4 -7).

Once responsibilities have been assigned, the next step is to identify each class's
collaborators, that is, the other classes in the system on which the current class depends in
order to fulfill its responsibilities. This, in essence, is where client/provider relationships
are identified.

The final steps involve rearranging the classes into a hierarchy (i.e., identifying
common responsibilities best factored into an abstract superclass), defining the specific
interface to each class (that is, the messages the objects respond to and the results they
return). In addition, for large systems another step is required to identify subsystems--
classes of objects which, to a client, act as a cohesive unit. After this, the design is stable,
and implementation can commence.

It must be stressed that the CRC method is not a linear progression as described
above. Instead, as with most object-oriented methods, CRC is iterative, cycling through
the stages until a stable design evolves. Indeed, this is one of the strengths of the
approach, as it can be used continuously to evolve a software system to respond to changes
in the environment where the system is employed.

By contrast, Booch's approach emphasizes the documentation of the design products,
rather than a method for their development. In fact, though the book contains case studies
in a variety of object-oriented and object-based languages, its value lies in the common
notation it promotes for recording the final design. Indeed, it appears that the products of a
CRC design effort could be easily transformed into Booch's notation almost mechanically.
The benefits are a graphic design that can be manipulated on a workstation, rather than the
collection of index cards that form the basis for a CRC design. In the long run, such
machine readable versions of the design are easier to maintain and verify against the
software that is developed.

3.2.3 Reusable Frameworks

One final theme of note is the emergence of reusable frameworks [53]. Frameworks
are part design and part implementation. They are collection of classes that provide a
skeleton software system which is embellished as necessary for a particular application.
The most well-known framework is model-view-controller (or MVC) used for graphical
interface development under Smalltalk-80 [23, 24]. Indeed, much of the research in

IV-16

framework development has focused on user interface issues, for example MacAPP for
Apple's Object-Pascal [38] and ET++ for C++ and the X windowing system [51].

The concept behind frameworks reflects the observation that in many systems there is
a core application that is unique, embedded in a context that is essentially constant between
applications. As windowing interfaces are the most obvious common element, these have
been the basis for most early frameworks, though seminal research in frameworks for other
applications is beginning to be published [33]. However, in keeping with tradition, we
will employ user interface frameworks, specifically MVC, as examples of the concept.

In simple terms, an application consists of one or more objects that contain the state
information of the system. We will call these objects the model, as they model or simulate
something of interest to the computer user. Normally the model is programmed to meet a
specific function, but sometimes an existing class can be used as a prototype or exemplar.
However, the displayed output is often stereotypical. To capture this commonality, MVC
embodies a set of distinct graphical views that can be associated with a model. Each view
captures a given aspect of the model of interest to the user. For example, if the model were
a binary tree, one view might be a graph of the structure, while another view might present
the same information as indented text.

A controller is an object that handles input events (keyboard and mouse activities) for
a given view. Using the binary tree example again, one might rearrange the nodes in the
tree by clicking and dragging the graphical nodes or by deleting and reinserting the lines in
the textual display.

This uncovers the problem of communicating such change, to the model (so that it can
update its internal version of the tree) and broadcasting such state changes to other views
(for example, the graphical view if the tree is changed by editing the text view). MVC
defines the protocol used to broadcast these changes, both from views to the model, and
outward from the model to the views. Thus the framework consists of the following:

" A well-defined communications protocol between the model and its various views
and controllers.

" A set of views and controllers which can be used as-is, or modified (by
inheritance) to create special purpose behavior.

* An overall structure for applications that precisely defines the role of the
application objects (model) within the MVC paradigm.

The greatest benefit accrues to frameworks when they provide a pattern of behavior
and a library of classes to ease the development of such behavior. Thus frameworks
provide both reusable code (in the library classes) as well as reusable design (in the overall
application structure and inter-class communication protocol).

4. QUALITY METRICS for OBJECT-ORIENTED DEVELOPMENT

4.1 Software Quality Framework

The preceding sections have presented an overview of object-oriented concepts and
current themes in object-oriented design. In this section, we concentrate on the use of

IV-17

metrics to evaluate software developed using object-oriented technology. It must be
stressed that this technology is still rapidly evolving, and to date little attention has been
focused on measurement of object-oriented artifacts. Thus, any metrics are tentative at
best, and reflect primarily subjective value judgements by practitioners in the field. The
appropriateness of the proposed measures must be continually evaluated, and must
carefully track further developments in research and practice.

Nevertheless, the current state-of-the-art is mature enough to propose reasonable
quality indicators. The following subsections consider the impact of object-oriented
techniques within this context of the RL Software Quality Framework [7]. The last of
these subsections contains a list and discussion of candidate questions related to object-
oriented development that could be incorporated into the existing Framework.

The software quality framework is a hierarchy, proceeding from user-oriented quality
factors through software-oriented quality criteria to measurable attributes embodied in
metrics and metric elements (the actual questions used to score quality). The investigation
of the effects of object-oriented technology on the framework proceeded in a top down
fashion. The remainder of this section discusses the factors, criteria, and metrics that we
believe would be significantly affected by the use of an object-oriented development
technology.

4.2 Software Quality Factors

Of the thirteen factors, seven would be impacted, either strongly or moderately, by the
use of object-oriented technology. The impacted factors are mostly concentrated in the
Framework's Design and Adaptation factor categories, with only one impacted factor
located in the Performance factor category. The following discussion focuses on each of
these factors in turn, providing a sketch of the effects of object-oriented technology, and
indicating the expected impact (strong or moderate).

4.2.1 Usability -How easily can the software be used?

Object-oriented technology, especially user interface prototyping packages, should
help clarify usability issues earlier in the development cycle. In addition, adoption of
standard object-oriented user interface packages should ease the transition from system to
system.

Expected Impact: MODERATE

4.2.2 Correctness - How well does the software conform to its requirements?

The use of object-oriented technology, especially from high level design through
implementation, provides a common language and notation that should help mitigate against
mistakes at the transition between stages. In addition, object-oriented technology makes it
easier to apply formal methods, in that the state of the system is subdivided along logical
class boundaries.

Expected Impact: MODERATE

IV- 18

4.2.3 Maintainability - How easily can defects be repaired?

Object-oriented technology capitalizes on the concepts of encaps.ilation and
information hiding to provide well-defined interaction boundaries. Coupled with a design
process that explicitly identifies inter-class collaborations, the effect should be to einhance
defect identification and elimination.

Expected Impact: STRONG

4.2.4 Expandability - How easily can the software be expanded or upgraded (i.e.,
how easily can the product evolve)?

Most proponents of object-oriented technology believe this is an area where the
object-oriented approach is significantly superior to traditional functional design. One
reason is that the objects or entities in a system change less frequently and dramatically than
do the specific functions the system is expected to perform. By encapsulating functionality
in objects, it becomes easier to identify the classes impacted by a proposed change, and
often the effects of the change can be isolated to a few, well-defined objects. In addition,
the inheritance can be used to specialize or extend the behavior of existing classes with little
or no effect on existing object interaction.

Expected Impact: STRONG

4.2.5 Flexibility - How easy is it to change the software?

The advantages of object-oriented technology cited for the maintainability and
expandability factors apply equally as well to flexibility.

Expected Impact: STRONG

4.2.6 Interoperability - How easy is it to interface the software with another
system?

The use of the object-oriented paradigm supports the isolation of external interfaces in
well-defined classes of interface objects. This makes it possible to abstract away the details
of interacting with another hardware or software system, and in effect shielding the bulk of
the current system from the complexities of interoperability. In addition, the adoption of
standard reusable frameworks encourages development classes and objects that conform to
standard interaction protocols, enhancing interoperability.

Expected Impact: MODERATE

4.2.7 Reusability - How easy is it to convert the software for use in another
application?

Reusability is another area where proponents of object-oriented technology claim
superiority to standard functional approaches. In particular, the use of object-oriented
domain analysis (OODA) coupled with object-oriented requirements analysis (OORA)
provides the opportunity to leverage off the work done in identifying classes of generic

IV-19

use. Even if code cannot be directly reused, design reuse can dramatically reduce both
development time and residual errors.

Note that there are two aspects to reuse: the development of reusable components or
designs as part of the current project, and the incorporation of reusable components or
designs from previous projects. While the current Framework includes only the former,
object-oriented technology, though concepts such as abstract classes and reusable
frameworks, offers the promise of easier identification and incorporation of reusable
components from the past.

Expected Impact: STRONG

4.3 Software Quality Criteria

Each factor is associated with one or more criteria, which indicate the extent to which
a piece of software exhibits the factor. It is often the case that a given criterion will be
associated with several factors. For example, the criterion of generality is important for
expandability, flexibility, and reusability. Obviously, the criteria of interest were a subset
of those affecting the factors previously identified. Of the 29 criteria used in the
framework, the following 10 appear to be most relevant in assessing the use of object-
oriented technology. Each criteria is followed by its standard Framework two character
acronym.

4.3.1 Application Independence (AP) - Concerns independence of the software
from particular operating systems, database systems, computer architecture, and
microcode.

Abstract classes can be used to define prototypical behavior required by the operating
system, database system, or underlying architecture. Concrete subclasses adhering to the
abstract specification can then be developed for each specific system, isolating the bulk of
the application from these details. This approach has already been used to advantage by the
implementers of Smalltalk/V, where generic user interface classes are specialize for the
different environments on which the product is supported.

4.3.2 Augmentability (AT) - Concerns the ability to expand the functionality or data
in a system.

Additional or enhanced functionality can be achieved by the mechanisms of
inheritance and dynamic binding of methods. New data objects can be introduced as either
new classes or subclasses of existing classes.

4.3.3 Completeness (CP) - Concerns the provision of functionality providing full
implementation of the requirements.

This is an area where the application of formal methods in conjunction with object-
oriented technology can improve analysis and design.

4.3.4 Consistency (CS) - Concerns the provision of uniform design and
implementation techniques and notation.

IV-20

By focusing on the objects and object classes from the earliest stages of development,
the progress becomes one of continual refinement of a common model. This is in contrast
to many function-oriented techniques, where the notation and underlying concepts change
radically from specification to design, and from design to implementation.

4.3.5 Functional Scope (FS) - Concerns the commonality of functions among
applications.

The use of abstract superclasses supports the definition of reusable design
components that support common functionality. Specific concrete subclasses can form the
basis of reusable, common application components.

4.3.6 Generality (GE) - Concerns breadth of functionality performed with respect to
an application.

The use of object-oriented domain analysis and object-oriented requirements analysis
can lead to the identification of classes with general, useful behavior. With inheritance,
these classes can be optimized or enhanced incrementally as needed by a specific
application.

4.3.7 Modularity (MO) - Concerns the provision of a structure of cohesive
components with optimal coupling.

Classes that are well specified and designed provide a natural, highly cohesive form
of modularity. Indeed, Meyer goes so far as to identify the concepts of class and module
[30]. Even if this extreme position is not adopted, the class provides a solid focal point for
cohesive collections of data and functions (methods).

In addition, object coupling is easily identified and optimized when using the various
manual (CRC) and graphical (Booch) notations. Finally, the class and object interaction
information provides guidance as to the packaging of classes into coherent subsystems.

4.3.8 Operability (OP) - Concerns the operations and procedures for using the
software that collects inputs and provides useful outputs.

This criterion has great influence on the usability of the resultant application. In
particular, object-oriented interface packages and associated interface standards provide an
excellent vehicle for prototyping interfaces and for ensuring interface consistency among
related applications.

4.3.9 Simplicity (SI) - Concerns the definition and implementation of functions in
the most noncomplex and understandable manner.

Proponents of the object-oriented approach argue that it is easier to explain and
understand systems defined in terms of the component entities rather than the specific
functions. In addition, the common vocabulary and notation possible at all stages enhances
the overall system simplicity. Thus, the appropriate use of this technology should lead to
systems whose structure is less complex, and whose components can be more easily
understood.

IV-21

4.3.10 System Clarity (ST) - Concerns the clear description of program structure in a
non-complex and understandable manner.

This is similar to simplicity, except that the focus is on higher level structural issues.
The object-oriented approach defines highly cohesive substructures, making it easier to
understand the possible interactions in the application. In addition, as the objects and high-
level connections tend to change relatively slowly, the clarity tends to remain high even in
the face of ongoing evolution.

4.4 Metric Enhancement for Object-Oriented Development

Each criterion has associated with it one or more metrics. These metrics are
quantitative measures that indicate the likelihood that the criterion is met by the product
under consideration. The metrics, in turn, consist of metric elements. These elements are
typically in question format and are used to quantize each metric, and by extension, the
criterion and the factors it influences.

As in the case of quality factors and quality criteria, not all metrics are relevant when
assessing software developed using object-oriented technology. Following are those
metrics deemed important for object-oriented development, along with the specific metric
elements being proposed for use with object-oriented technology. For each metric element,
a short rationale is given for its inclusion in the list, and the metric worksheets where the
element should appear are listed. Each new metric element is identified using the
Framework's metric element format. Metric elements in each group are numbered
sequentially, starting with the first available identifier. For example, the Framework
currently includes one question in the AP.l metric group, AP.l(1). The new metric
elements shown below for group AP. 1 are identified beginning with AP. 1(2).

4.4.1 Application Independence

4.4.1.1 Database Management Implementation (AP.1)

Classes can and should be designed to isolate the body of the application from the
particular details of the database system. The objects in these classes should reflect the
logical view of the database required by the application, rather than the specific views
supported by the database package itself.

AP. 1(2) Are classes defined to provide abstract access to the database system? [Y/N/NA]

RATIONALE: Encapsulates knowledge about the details of the database system structure
in a small number of related classes.

WORKSHEETS: 1, 2

AP. 1(3) Are accesses to the database system via objects in the classes defined in
AP. 1(2)? [Y/N/NA]

RATIONALE: Helps insure consistent access to database information.

IV-22

WORKSHEETS: 1, 2

AP.I(4) Do classes exist in the design (implementation) that provide abstract access to
the database system? [YIN/NA]

RATIONALE: Design and implementation version of AP. 1(2)

WORKSHEETS: 3A, 4A

AP. 1(5) Does this unit perform all database accesses via objects in classes defined for
this purpose? [Y/N/NA]?

RATIONALE: This is a detailed design and implementation version (unit level) of the
general question AP. 1(3).

WORKSHEETS: 3B, 4B

AP. 1(6) (a). Number of units accessing the database.
(b). Number of units using objects in the provided classes.

(c). Enter (b) / (a)

RATIONALE: This is a detailed design and implementation version (CSCI level) of the
general question AP.1(3).

WORKSHEETS: 3A, 4A

4.4.1.2 Data Structures (AP.2)

In object-oriented technology, all information on data structure is maintained in the
objects themselves. Thus issues related to the naming and use of data structures are
intimately tied to the class structure and object interactions.

AP.2(5) Is there a standard for identifying all global objects and their associated classes

used by a unit? [Y/N/NA]

RATIONALE: Identifies potential dependencies on particular global entities.

WORKSHEETS: 0, 1, 2

AP.2(6) Is there a standard for identifying the class of all parameter objects and local
objects used in a unit? [Y/N/NA]

RATIONALE: Identifies all dependencies on classes that will be required should the unit
be used in another application.

WORKSHEETS: 0, 1, 2

IV-23

AP.2(7). Does the unit follow the standard in identifying all global objects and their
associated classes used by a unit? [Y/N/NA]

RATIONALE: This is the detailed design and implementation version (unit level) of
question AP.2(5)

WORKSHEETS: 3B, 4B

AP.2(8) (a) Number of units in this CSCI

(b) Number of units following the standards for identifying global objects

(c) Enter (b) / (a)

RATIONALE: This is a detailed design and implementation version (CSCI level) of the

general question AP.2.(5)

WORKSHEETS: 3A, 4A

AP.2(9) Does the unit follow the standard for identifying the class of all parameter
objects and local objects used in a unit? [Y/N/NA]

RATIONALE: This is the detailed design and implementation version (unit level) of
question AP.2(6).

WORKSHEETS: 3B, 4B

AP.2(10) (a) Number of units in this CSCI:

(b) Number of units following the standards for identifying parameter and

local object classes:

(c) Enter (b) / (a)

RATIONALE: This is a detailed design and implementation version (CSCI level) of the

general question AP.2(6)

WORKSHEETS: 3A, 4A

4.4.2 Augmentability

In object-oriented systems, design extensibility primarily involves the development or
reuse of abstract classes and reusable frameworks providing an open-ended path for
systematic software evolution.

4.4.2.1 Design Extensibility (AT.4)

AT.4(4) Is documentation available describing domain analysis for generic classes of
relevance to the application? [Y/N/NA]

IV-24

RATIONALE: Existing class definitions for the application domain help to insure that
general, extensible classes are used for high level architectural decisions.

WORKSHEETS: 0, 1

AT.4(5) Is documentation available describing feasibility studies done with the goal of
identifying reusable frameworks for incorporation in the application? [Y/N/NA]

RATIONALE: Frameworks are by their nature skeleton applications designed with

extensibility and evolution in mind.

WORKSHEETS: 0, 1

AT.4(6) Is there documentation discussing proposed classes in terms of their potential
for extension? [Y/N/NA]

RATIONALE: Classes are the primary unit of extensibility and the potential for extension

is a key aspect of high-level design.

WORKSHEETS: 2

AT.4(7) Is there documentation of classes in the system designed specifically to address
expected areas of extension? [Y/N/NA]

RATIONALE: Classes which encapsulate data and functions that are candidates for
anticipated extension should be identified as such. In part, this is a design oriented version
of question AT.4(4).

WORKSHEETS: 2

AT.4(8) Is there documentation describing the use of frameworks as part of the skeleton
design? [Y/N/NA]

RATIONALE: This is the high-level design version of question AT.4(5)

WORKSHEET: 2

4.4.3 Completeness

The use of formal methods to describe the state invariants of the objects in each class,
as well as the preconditions and postconditions for the use of each message/method will
help insure completeness and correctness. In addition, some items on the checklist should
be phrased in terms appropriate for object-oriented technology.

4.4.3.1 Completeness Checklist (CP.1)

CP. 1(12) Has every required function been assigned as a responsibility of an appropriate
class? [Y/N/NA]

RATIONALE: This insures that all required functionality has been addressed.

IV-25

WORKSHEETS: 1, 2,3A

CP.1(13) Has every class been assigned a clear set of responsibilities? [Y/N/NA]

RATIONALE: Guarantees that each class has an appropriate role in the overall system.

WORKSHEETS: 1, 2, 3A

CP.1(14) Are each class's collaborating classes identified and are the collaborations

defined? [Y/N/NA]

RATIONALE: Identifies the inter-object communication within the application.

WORKSHEETS: 1, 2, 3A

CP.1(15) In the class hierarchy, is each subclass's behavior defined relative to that of the

parent class? [Y/N/NA]

RATIONALE: Identifies the role of inheritance within the overall application.

WORKSHEETS: 1, 2,3A

CP.1(16) Do class descriptions include a precise (e.g., mathematical) description of the
state invariant for each object in the class, as well as pre and post conditions for
the use of each method? [Y/N/NA]

RATIONALE: Formal specifications document class behavior precisely, and can uncover
ambiguities and design omissions.

WORKSHEETS: 1, 2

CP.1(17) Do the classes in this unit have precise (e.g., mathematical) descriptions of the
state invariant for each object, as well as pre and post conditions for the use of
each method? [Y/N/NA]

RATIONALE: Detailed design version (unit level) of question CP.l(16)

WORKSHEETS: 3B

CP.1(18) (a) Number of units in this CSCI:
(b) Number of units with precise descriptions of class behavior

(c) Enter (b) / (a)

RATIONALE: Detailed design version (CSCI level) of question CP.1(16)

WORKSHEETS: 3A

IV-26

4.4.4 Consistency

NOTE: One of the primary facets of object-oriented technology is the intimate coupling of
data (state) and procedure (methods) within the framework of a class. For this reason, the
functional dvision into procedure consistency and data consistency is inappropriate, and
the questions for consistency will be in terms of a new combined metric category, Object
Consistency.

4.4.4.1 Object Consistency (CS.3)

CS.3(1) Has a specific standard been established for documenting class responsibilities?
[Y/N/NA]

RATIONALE: The responsibilities of each class (what behavior it must exhibit) are

important for evaluating designs, and a standard way of representing these is essential.

WORKSHEETS: 0, 1

CS.3(2) Has a specific standard been established for representing class relationships
(e.g., Booch diagrams, CRC cards)? [Y/N/NA]

RATIONALE: A standard way of representing both the inheritance hierarchy and the

client/provider relationships is essential to effective communication.

WORKSHEETS: 0, 1

CS.3(3) Has a specific standard been established for naming both classes and their
methods? [Y/N/NA]

RATIONALE: Naming conventions are crucial in order to avoid name clashes and
ambiguities.

WORKSIIEETS: 0, 1

CS.3(4) Has a specific standard been established for naming all global objects?
[Y/N/NAI

RATIONALE: It is important to be able to distinguish global from local references when

evaluating and maintaining software.

WORKSHEETS: 0, 1

CS.3(5) Does the design follow standards for documenting class responsibilities?
[Y/N/NA]

RATIONALE: Preliminary design version of question CS.3(1)

WORKSHEETS: 2

IV-27

CS.3(6) Does the design follow the standard for representing class relationships?

[Y/N/NA]

RATIONALE: Preliminary design version of question CS.3(2).

WORKSHEETS: 2

CS.3(7) Does the design follow the standard for naming classes and methods?

(YI/NNA]

RATIONALE: Preliminary design version of question CS.3(3).

WORKSHEETS: 2

CS.3(8) Does the design follow the standard for naming all global objects? [Y/N/NA]

RATIONALE: Preliminary design version of question CS.3(4)

WORKSHEETS: 2

CS.3(9) Does the unit follow standards for documenting class responsibilities?
[Y/N/NA]

RATIONALE: Unit level version of question CS.3(I).

WORKSHEETS: 3B

CS.3(10) (a) Number of units in this CSCI:
(b) Number of units following standards for class responsibilities:

(c) Enter (b) / (a)

RATIONALE: CSCI level version of question CS.3(l).

WORKSHEETS: 3A

CS.3(1 1) Does unit follow the standards for representing class relationships? [Y/N/NA]

RATIONALE: Unit level version of question CS.3(2)

WORKSHEETS: 3B

CS.3(12) (a) Number of units in this CSCI:
(b) Number of units following standards for class relationships:

(c) Enter(b) / (a):

RATIONALE: CSCI level version of question CS.3(2).

IV-28

WORKSHEETS: 3A

CS.3(13) Does the unit follow the standard for naming classes and methods? [Y/N/NA]

RATIONALE: Unit level version of question CS.3(3).

WORKSHEETS: 3B

CS.3(14). (a) Number of units in this CSCI:
(b) Number of units following standards for class and method naming

(c) Enter (b) / (a):

RATIONALE: CSCI level version of question CS.3(3)

WORKSHEETS: 3A

CS.3(15) Does the unit follow the standard for naming all global objects? [Y/N/NA]

RATIONALE: Unit version of question CS.3(4)

WORKSHEETS: 3B

CS.3(16) (a) Number of units in this CSCI:
(b) Number of units following standards for naming global objects:

(c) Enter (b) / (a):

RATIONALE: CSCI level version of question CS.3(4).

WORKSHEETS: 3A

4.4.5 Functional Scope (FS)

4.4.5.1 Functional Commonality (FS.2)

This metric is concerned with the commonality of function with other similar
applications. Our metric elements interpret the concept of "function" liberally as a synonym
for class and object.

F5.2(7) Are there requirements to construct abstract super classes so as to enhance

design reusability in similar applications?

RATIONALE: Abstract classes promote commonality and reuse.

WORKSHEETS: 0, 1

IV-29

FS.2(8) Are there requirements to construct concrete classes so as to facilitate their use
in similar applications.

RATIONALE: Such construction supports code commonality as well as design
commonality.

WORKSHEETS 0, 1

FS.2(9) (a) How many classes are in the system?
(b) How many classes are likely to satisfy requirements of similar

applications?

(c) Enter (b) / (a)

RATIONALE: This element measures the actual commonality achieved by the design.

WORKSHEETS: 2

4.4.6 Generality (GE)

4.4.6.1 Unit Referencing

This measures generality by how many references there are to an entity (in our case,
classes).

GE. 1(2) (a) How many total superclasses?
(b) How many superclasses ancestors of more than one subclass?

(c) Enter (b) / (a)

RATIONALE: This measures the degree to which superclasses provide generally useful

services to be extended.

WORKSHEETS: 2

GE. 1(3) (a) How many total classes?
(b) How many classes provide service to more than one client class?

(c) Enter (b) / (a)

RATIONALE: This measures the degree to which a classes provide generally useful
services within the application.

WORKSHEETS: 3A, 4A

NOTE: Modularity using object-oriented technology is evaluated quite differently from
that used in function-oriented structured design. In particular, the class (and its objects) are
the focus rather than individual procedures. Thus, existing worksheet questions
related to structured design concepts are not applicable to software

IV-30

developments using object-oriented technology and would be replaced by

their equivalents in the metric element lists below.

4.4.7 Modularity (MO)

4.4.7.1 Modular Implementation (MO.A)

MO.1(10) Are there requirements to develop all classes using an established object-
oriented technique (e.g., Booch or CRC methods)? [Y/N/NA]

RATIONALE: Replaces MO.l(1)

WORKSHEETS: 0, 1

MO.I(1 1) Are all classes developed according to an established object-oriented technique?

[Y/N/NA]

RATIONALE: Replaces MO.I(2)

WORKSHEETS: 0, 1, 2, 3A, 4A

MO.l(12) Do any of the methods in the current class have implementations exceeding 50
non-comment source lines? [Y/N/NA]

RATIONALE: Replaces MO. 1(3) at unit level. In general, method bodies should be very

small.

WORKSHEETS: 3B, 4B

MO.l(13) (a) How many total classes?

(b) How many classes have methods with over 50 non-comment source

lines?

(c) Enter 1 - ((b) / (a))

RATIONALE: Replaces MO.1 (3) at CSCI level.

WORKSHEETS: 3A, 4A

MO.l(14) Do each of the methods in the current class have a single processing objective?

[Y/N/NA]

RATIONALE: Replaces MO. 1(9) at unit level.

WORKSHEETS: 3B, 4B

IV-31

777.n.

MO.l(15) (a) How many total classes?
(b) How many classes have only methods with a single processing

objective?
(c) Enter (b)/(a)

RATIONALE: Replaces MO.l (9) at CSCI level

WORKSHEETS 3A, 4A

4.4.7.2 Modular Design (MO.2)

Modular design in object-oriented systems is evaluated more on the relationships
between classes than on a simple function-oriented basis. These metrics reflect this
viewpoinL

MO.2(6) Are there requirements limiting the number of collaborations any given class

may engage in? [Y/N/NA]

RATIONALE: Increases in collaborations correlate to increased object coupling.

WORKSHEETS: 0, 1

MO.2(7) Do the classes in this CSCI obey the limitations on the number of collaborating
classes? [Y/N/NA]

RATIONALE: Design version of MO.2(6)

WORKSHEETS: 2, 3A

MO.2(8) Are there requirements limiting the direct access to instance variables in a
superclass? [YIN/NA]

RATIONALE: Such access violates encapsulation, and makes it more difficult to verify the
correct operation of a class. It creates a form of common coupling between the two
classes.

WORKSHEETS: 0

MO.2(9) (a) How many classes in this CSCI?

(b) How many classes directly access ancestor class instance variables?

(c) Enter (b) / (a)

RATIONALE: Design version of MO.2(8)

WORKSHEETS: 2, 3A, 4A

IV-32

4.4.8 Operability (OP)

NOTE: The next two metrics relate to the use of object-oriented user interface packages
and general interface frameworks. They are grouped into a new metric category, user
communicativeness (OP.4). The same questions apply to both input and output
communicativeness.

4.4.8.1 User Communicativeness (OP.4)

OP.4(1) Has an object oriented interface package been used to prototype prospective

user interfaces? [Y/N/NA]

RATIONALE: Prototyping is important in establishing the appropriate interface.

WORKSHEETS: 0, 1

OP.4(2) Has an engineering study been performed on the feasibility of employing a
reusable framework as the basis of the user interface?

RATIONALE: Where appropriate, reusable frameworks help establish common look and
feel among applications.

WORKSHEETS: 0, 1

4.4.9 Simplicity (SI)

4.4.9.1 Design Structure (SI.1)

These elements reflect the object-oriented version of many design simplicity elements
originally developed for functional decomposition.

SI.1(11) Are there appropriate graphical representations of the class hierarchy and class
collaborations (e.g., Booch diagrams)? [Y/N/NA]

RATIONALE: These diagrams provide a high level view of overall application
architecture.

WORKSHEETS: 0, 1

SI.1(12) Have the graphical representations of class hierarchy and class collaborations

been followed? [Y/N/NA]

RATIONALE: Design version of S1.l(1 1)

WORKSHEETS: 2, 3A

IV-33

SI.1(13) Are there programming standards for the development of classes and methods?

(Y/N/NA]

RATIONALE: Similar to current SI.1(8)

WORKSHEETS: 0, 1, 2

SI.1(14) Do the classes in this unit follow the defined programming standards?

[Y/N/NA]

RATIONALE: Detailed design and implementation version of SI. 1(13) (unit level)

WORKSHEETS: 3B, 4B

SI.1(15) (a) How many units in this CSCI?
(b) How many units follow the programming standards?

(c) Enter (b) / (a)

RATIONALE: Detailed design and implementation version of SI. 1(14) (CSCI level)

WORKSHEETS: 3A, 4A

4.4.10 System Clarity (ST)

4.4.10.1 Interface Complexity (ST.1)

Interface complexity relates to both the inheritance structure, and the form, number,
and specification of methods.

ST.1(7) Is each method clearly and precisely specified (e.g., via pre and post conditions
and its effect on the object state). [Y/N/NA]

RATIONALE: Such specifications are essential to understanding a class's interface.

WORKSHEETS: 2, 3A

ST. 1(8) Are methods categorized as to whether they interrogate the object state or alter
this state? [Y/N/NA]

RATIONALE: Such separation makes it easier to determine the effects of sending a

message to the object.

WORKSHEETS: 2, 3A

ST. 1 (9) Is the application inheritance structure fewer than five levels deep? [Y/N/NA]

RATIONALE: Structures exceeding this limit make it more difficult to determine the
precise method that may be used when and object is sent a message.

IV-34

WORKSHEETS: 2, 3A

ST.1(10) Is each class free from methods with duplicated or overlapping functionality?
(Y/N/A]

RATIONALE: Such duplication increases the complexity of the class, and can lead to

confusion as to which message should be used.

WORKSHEETS: 2, 3A

5. REFERENCES

[1] G. Agha and C. Hewitt, "Actors: A Conceptual Foundation for Concurrent Object-
Oriented Programming," in B. Shriver and P. Wegner, (editors), Research Directions
in Object-Oriented Programming, MIT Press, Cambridge, MA, 1987.

[2] P. America and F. van der Linden, "A Parallel Object-Oriented Language with
Inheritance and Subtyping," OOPSLAIECOOP '90, pp. 161-168, Ottawa, Canada,
October,1990.

[3] D. Bobrow, L. DeMichiel, R. Gabriel, G. Kiczales, D. Moon, and S. Keene, The
Common Lisp Object System, Technical Report 88-002R, X3J13 Standards
Committee, 1988.

[4] G. Booch, Software Components with Ada, Benjamin/Cummings, Reading, MA,
1987.

[5] G.Booch, "Design of the C++ Booch Components," OOPSLAIECOOP '90, pp. 1-
11, Ottawa, Canada, October 1990.

[6] G. Booch, Object Oriented Design with Applications, Benjamin/Cummings,
Reading, MA, 1990.

[7] T. Bowen, G. Wigle, and J. Tsai, Specification of Software Quality Attributes,
Technical Report RADC-TR-85-37, Rome Air Development Center, 1985.

[8] C. Chee, C. Ng, and M. Sim, "Towards an Object-Oriented Analysis and Design
Methodology (TOAD)," Symposium on Object-Oriented Programming Emphasizing
Practical Applications, pp. 1-15, Marist College, September 1990.

[9] M. Cline and D. Lea, "The behavior of C++ Classes," Symposium on Object-
Oriented Programming Emphasizing Practical Applications, pp. 81-91, Marist
College, September 1990.

[101 P. Coad and E. Yourdon, Object-Oriented Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[11] B. Cox, Object-Oriented Programming, Addison-Wesley, Reading, MA, 1986.

IV-35

[12] OJ. Dahl, B. Myhrhaug, and K. Nygaard, The Simula 67 Common Base Language,

Norwegian Computing Centre, Oslo, Norway, 1968.

[13] A. Diller, Z: An Introduction to Formal Methods, John Wiley and Sons, 1990.

[14] R. Duke, P. King, G. Rose, and G. Smith, The Object-Z Specification Language
Version 1., Technical Report 9 1-1, The University of Queensland, 1991.

[15] J. Goguen and J. Meseguer, "Unifying Functional, Object-Oriented, and Relational
Programming with Logical Semantics," in B. Shriver and P. Wegner, (editors),
Research Directions in Object-Oriented Programming, MIT Press, Cambridge, MA,
1987.

[16] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison Wesley, Reading, MA, 1983.

[17] J. Guttag, J. Homing, and A. Modet, Report on the Larch Shared Language: Version
2.3, Technical Report 58, DEC Systems Research Center, 1990.

[18] B. Henderson-Sellers and J. Edwards, 'The Object-Oriented Systems Life Cycle,"
Communications of the ACM, (33,9), pp. 142-159, September, 1990.

[19] C. A. R. Hoare, Notes on Data Structuring in Structured Programming, Academic

Press, New York, 1972.

[20] D. Ingalls, "Design Principles Behind Smalltalk," Byte, (6,8), August,1981.

[211 B. Kemighan and D. Ritchie, The C Programming Language 2nd ed, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[22] T. Korson and J. McGregor, "Understanding Object-Oriented: A Unifying
Paradigm," Communications of the ACM, (33,9), pp. 41-60, September, 1990.

[23] W. LaLonde and J. Pugh, Inside Smalltalk: Volume I, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[24] W. LaLonde and J. Pugh, Inside Smalltalk: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[25] B. Lampson, J. Homing, R. London, J. Mitchell, and G. Popek, "Report on the
Programming Language Euclid," SIGPLAN Notices, (12,2), pp. 1-79, February,
1977.

[26] M. Lehman and L. Belady, Program Evolution: Processes of Change, Academic
Press, London, 1985.

[27] K. Lieberherr and I. Holland, "Assuring Good Style for Object-Oriented
Programming," IEEE Software, (6,5), pp. 38-48, September, 1989.

IV-36

[28] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. Schaffert, R. Scheifler, and A.
Snyder, CLU Reference Manual, Springer-Verlag, New York, 1981.

[29] M. D. Mcllroy, "Mass-Produced Software Components," in J. Buxton, P. Naur, and
B. Randell, (editors), Software Engineering Concepts and Techniques (1968 NATO
Conference on Software Engineering), pp. 88-98. Van Nostrand Reinhold, 1976.

[30] B. Meyer, Object-Oriented Software Construction, Prentice-Hall, Englewood Cliffs,
NY, 1988.

[31] B. Meyer, "Lessons From the Design of the Eiffel Libraries," Communications of the
ACM, (33,9), pp. 69-88, September, 1990.

[32] D. Moon, "Object-Oriented Programming with Flavors," OOPSLA '86, pp. 1-8,
Portland, OR, September, 1986.

[33] W. Opdyke and R. Johnson, "Refactoring: An Aid in Designing Application
Frameworks," Symposium on Object-Oriented Programming Emphasizing Practical
Applications, pp. 145-161. Marist College, September 1990.

[34] W. Opdyke and R. Johnson, "Refactoring: An Aid in Designing Application
Frameworks," Symposium on Object-Oriented Programming Emphasizing Practical
Applications, pp. 145-161. Marist College, September 1990.

[35] D. Parnas, "On the Criteria to be Used in Decomposing Systems Into Modules,"
Communications of the ACM, (15,12), pp. 1053-1058, December, 1972.

[36] W. Pun and R. Winder, "A Design Method for Object-Oriented Programming,"
ECOOP '89, pp. 225-242, University of Nottingham, July,1989.

[37] M. Sakkinen, "Disciplined Inheritance," ECOOP'89, pp. 39-56, University of
Nottingham, July, 1989.

[38] K. Schmucker, Object-Oriented Programming for the Macintosh, Hayden Book
Company, Hasbrouck Heights, NJ, 1986.

[39] S. Shlaer and S. Mellor, Object-Oriented Systems Analysis, Prentice-Hall,
Englewood Cliffs, NY, 1988.

[40] B. Shriver and P. Wegner (editors), Research Directions in Object Oriented
Programming, MIT Press, Cambridge, MA, 1987.

[41] A. Snyder, "Encapsulation and Inheritance in Object-Oriented Programming

Languages," OOPSLA '86, pp. 38-45, Portland, OR, September 1986.

[42] Classic Ada, Software Productivity Solutions, Inc., Melbourne, FL.

[43] J. Spivey, The Z Notation: A Reference Manual, Prentice-Hall, 1989.

IV-37

[44] G. Steele, LISP, Digital Press, Burlington, MA, 1984.

[45] L. Stein, "Delegation is Inheritance," OOPSLA '87, pp. 138-146, Orlando, FL,
October, 1987.

[46] C. Strachey, "Fundamental Concepts in Programming Languages," Lecture Notes for
International Summer School in Computer Programming, Copenhagen, August,
1967.

[47] B. Stroustrop, The C++ Programming Language, Addison Wesley, Reading, MA,
1986.

[48] U. S. Department of Defense, Reference Manualfor the Ada Programming
Language, 1983.

[49] D. Ungar, "Self: The power of Simplicity," OOPSLA '87, pp. 138-146, Orlando,
FL, October,1987.

[50] P. Wegner, "Dimensions of Object-Based Language Design," OOPSLA '87, pp.
168-182, Orlando, FL, October 1987.

[51] A. Weinand, E. Gamma, and R. Marty, "ET++ - An Object Oriented Application
Framework in C++," OOPSLA '88, pp. 46-57, San Diego, September,. 1988.

[52] J. Wing, "Using Larch to Specify Avalon/C++ Objects," IEEE Transactions on
Software Engineering, (16,9), pp. 1076-1088, September, 1990.

[53] R. Wirfs-Brock and R. Johnson, "Surveying Current Research in Object-Oriented
Design," Communications of the ACM, (33,9), pp. 104-124, September, 1990.

[54] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software,
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[55] N. Wirth, '"The programming language Pascal," Acta Informatica (1,1), pp. 35-63,
1971.

[56] N. Wirth, Programming in Modula-2 (3rd edition), Springer-Verlag, New York,
1985.

IV-38

~OF

ROME LABORATORY

Rome Laboratory plo and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of epertise. Technical and engineerng suort within
areas of competence is provided to ESD Program Offices (POs and other

ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratorys technology supports other AFSC Prodct Divisons, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

Including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software pror)ucibilltyg wide area surveIllance/sensors, signal proces-
sing, solid state sciences, photoncs, electromagnetic technology, super-

condwtivity, and electronic reliability/malntainabtlty and testability.

